Capsule-Pipelining—An Improved Theoretical Analysis

1977 ◽  
Vol 99 (4) ◽  
pp. 763-771 ◽  
Author(s):  
V. K. Garg

This paper provides an improvement over the earlier theoretical analysis for a rigid, frictionless, cylindrical capsule moving parallel to the horizontal pipe wall (Garg and Round [1]) by taking into account the effects of friction between the capsule and pipe surfaces and of nonuniform clearance over the capsule length. It is found that these effects markedly affect the energy requirements suggesting, thereby, an optimum operation of the capsule-pipeline system. The theoretical results are also compared with the available experimental data.

Author(s):  
Arvind Kumar ◽  
D. R. Kaushal ◽  
Umesh Kumar

Bends are integral part of any slurry pipeline system and are prone to excessive wear. Therefore, a detailed knowledge of the flow characteristics in the bends will enable us to identify the causes of excessive wear which in turn may help in developing remedial steps to control the excessive wear. In the present study, experimental data are collected in a 90 degree horizontal pipe bend having bend radius of 148 mm situated in a pilot plant test loop with pipe diameter of 53 mm. The experiments are performed at volumetric concentration of 16.28% of silica sand having mean particle diameter of 448.5 micron. The flow velocity was varied from 1.78 to 3.56 m/s. Separation chambers are provided at each pressure tap for interface separation of slurry and manometric fluid, water being the intermediate fluid. For better accuracy, pressure drop along the pipeline is measured by an inclined manometer. Electromagnetic flow meter is used for the measurement of slurry discharge. It is observed that pressure drop along the pipe bend increases with flow velocity. The experimental data collected in the present study have been compared with the three-dimensional computational fluid dynamics (CFD) modeling, using Eulerian two-phase model and commercial CFD package FLUENT 6.2. Eulerian model expands the definition of continuum assumption to the dispersed phase and treats both continuous and dispersed phases separately as two phases. Both phases are linked using the drag force in the momentum equation. The standard k-epsilon model is used to treat turbulence phenomena in both the phases. The granular theory for the liquid–solid flow of the Eulerian model is introduced. Gambit software is used for the development of mesh. It is observed that CFD modeling gives fairly accurate results for almost all the pressure drop data considered in the present study. CFD modeling results for concentration and velocity profiles for collected experimental data have also been presented.


1997 ◽  
Vol 67 (9) ◽  
pp. 643-653 ◽  
Author(s):  
Ali Akbar Merati ◽  
Fujio Konda ◽  
Masaaki Okamura ◽  
Etsuo Marui

We have analyzed the tension distribution along the yarn tail in the yarn-forming zone of a friction spinning machine by considering the effective parameters of the torque applied to the yarn tail. Tension is applied to the yarn tail by suction air pressure and rotation of friction rollers. The yarn tension in the yarn-forming zone is measured for various yarn counts and suction air pressures. The effects of the parameters on yarn tension are considered in a theoretical analysis based on tension distribution along the conical yarn tail. Theoretical results are compared with me experimental data. The results of this research show that yarn tension increases with increasing suction air pressure and yarn size in tex, and yam diameter decreases with increasing suction air pressure for the same yarn size. Therefore, because of the low tension experienced with fine yarns, it is difficult to properly produce such yarns through friction spinning.


Author(s):  
Gennadiy V. Egorov ◽  
Yuriy L. Vorobyov ◽  
Katrin Y. Foedorova

The nonlinear boundary value problem is studied for potential function of progressive surface waves with finite amplitude in shallow water. For the first time the method of space deformation is used to get an approximate solution for evaluation of wave load on a horizontal pipe lying at the bottom. The theoretical results are compared with experimental data and showed practically good conformity.


2021 ◽  
Vol 66 (8) ◽  
pp. 653
Author(s):  
M.A. Aygun

We perform an extensive theoretical analysis of 10C nucleus with the use of various theoretical approaches involving the different nuclear potentials and different density distributions, as well as a simple cluster approach. We try to explain new measured and challenging experimental data on the 10C + 58Ni system at 35.3 MeV. First, we investigate the effect of thirteen different potentials. Then, we examine ten different types of density distributions for 10C nucleus. Finally, we present a simple calculation method for various cluster states of 10C, compare all the theoretical results with the experimental data, and obtain their improved agreement.


Author(s):  
A. Gómez ◽  
P. Schabes-Retchkiman ◽  
M. José-Yacamán ◽  
T. Ocaña

The splitting effect that is observed in microdiffraction pat-terns of small metallic particles in the size range 50-500 Å can be understood using the dynamical theory of electron diffraction for the case of a crystal containing a finite wedge. For the experimental data we refer to part I of this work in these proceedings.


1990 ◽  
Vol 112 (4) ◽  
pp. 590-595 ◽  
Author(s):  
J. H. Steward

In this paper, the requirements for an accurate 3D model of the tooth contact-line load distribution in real spur gears are summarized. The theoretical results (obtained by F.E.M.) for the point load compliance of wide-faced spur gear teeth are set out. These values compare well with experimental data obtained from tests on a large spur gear (18 mm module, 18 teeth).


Optics ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 25-42
Author(s):  
Ioseph Gurwich ◽  
Yakov Greenberg ◽  
Kobi Harush ◽  
Yarden Tzabari

The present study is aimed at designing anti-reflective (AR) engraving on the input–output surfaces of a rectangular light-guide. We estimate AR efficiency, by the transmittance level in the angular range, determined by the light-guide. Using nano-engraving, we achieve a uniform high transmission over a wide range of wavelengths. In the past, we used smoothed conical pins or indentations on the faces of light-guide crystal as the engraved structure. Here, we widen the class of pins under consideration, following the physical model developed in the previous paper. We analyze the smoothed pyramidal pins with different base shapes. The possible effect of randomization of the pins parameters is also examined. The results obtained demonstrate optimized engraved structure with parameters depending on the required spectral range and facet format. The predicted level of transmittance is close to 99%, and its flatness (estimated by the standard deviation) in the required wavelengths range is 0.2%. The theoretical analysis and numerical calculations indicate that the obtained results demonstrate the best transmission (reflection) we can expect for a facet with the given shape and size for the required spectral band. The approach is equally useful for any other form and of the facet. We also discuss a simple way of comparing experimental and theoretical results for a light-guide with the designed input and output features. In this study, as well as in our previous work, we restrict ourselves to rectangular facets. We also consider the limitations on maximal transmission produced by the size and shape of the light-guide facets. The theoretical analysis is performed for an infinite structure and serves as an upper bound on the transmittance for smaller-size apertures.


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Eduard Amromin

According to several known experiments, an increase of the incoming flow air content can increase the hydrofoil lift coefficient. The presented theoretical study shows that such increase is associated with the decrease of the fluid density at the cavity surface. This decrease is caused by entrainment of air bubbles to the cavity from the surrounding flow. The theoretical results based on such explanation are in a good agreement with the earlier published experimental data for NACA0015.


2011 ◽  
Vol 368-373 ◽  
pp. 2483-2490
Author(s):  
Yao Ting Zhang ◽  
Yi Zheng ◽  
Hong Jian Li

A dynamic test of two unbonded fully prestressed concrete beams has been conducted. The results indicate that the natural frequency of beams increases with the prestress force, which is opposite to the analytical arguments for homogeneous and isotropic beams subject to axial force. This paper explains the change in frequencies by discussing the change in the elastic modulus. A modified formula is also proposed, and the experimental data agree well with the theoretical analysis.


Author(s):  
Isoharu Nishiguchi ◽  
Fumitoshi Sakata ◽  
Seiichi Hamada

A method to investigate pipe wall thinning using guided waves has been developed for pipes in thermal power generation facilities. In this paper, the reflection coefficient and the transmission coefficient are derived for the torsional waves which propagate along a pipe and a simplified method to predict the waveform is proposed. The predictions of the waveforms by the FEM and a simplified method based on the reflection of torsional waves are also examined by comparing with experimental data.


Sign in / Sign up

Export Citation Format

Share Document