Pressure Distribution for Patchlike Contact in Seals With Frictional Heating, Thermal Expansion, and Wear

1976 ◽  
Vol 98 (4) ◽  
pp. 596-601 ◽  
Author(s):  
S. R. Kilaparti ◽  
R. A. Burton

Sliding contact in seals is known to change at high sliding speed from initially uniform pressure to a deformed state where contact is restricted to small patches of the surface. An earlier analysis of such contact was based upon the assumption of uniform pressure on the small patches. The present study draws upon a thermoelastic influence function to provide simultaneous equations for pressure on subdivisions of the patches. The final result is that at high wear rate (and, consequently, high traversal speed of the patch along the surface of the more conductive body of the contacting pair) the pressure distribution becomes roughly triangular with the maximum pressure toward the leading edge of the patch.

When rocks are cut in coal mines by steel picks, frictional heating sometimes causes ignition of methane; high speed water jets may provide a method of cutting which is free from this hazard. A high speed water jet emerging from a nozzle slows down with increasing distance from the nozzle and breaks up into water drops. Studies were made of the behaviour of water jets: in most of the experiments the jets were produced by pressures of 600 atm., but some results are given of experiments at pressures up to 5000 atm. The jets were examined by short exposure optical photography with several different methods of illumination (parallel transmitted, diffuse, and schlieren) and by X-ray photography. In order to find out how the jet velocity decays with distance from a nozzle, and to compare nozzle designs, a target plate containing a hole smaller than the jet diameter was placed so that the jet impinged at right angles on to it, and the target plate was moved until the maximum pressure at the hole was found: this was measured for different distances from the nozzle. Nozzle shapes suggested in literature for minimizing jet dispersion were studied and an empirical investigation of a variety of nozzle shapes was carried out. Several nozzle shapes were found which gave good results, i.e. the maximum pressure on the target plate was half the pump pressure at a distance of about 350 nozzle diameters. In many cutting applications the first stage in the process would be the impingement of a water jet on a surface at right angles. The initial cutting would depend upon the stress distribution within the target, which in turn would depend upon the pressure distribution produced by the water jet on the surface. A theory is given of the pressure distribution on the target plate, which predicts that the pressure will fall to zero at about 2.6 jet radii: this was found to be in good agreement with experiments. Preliminary studies were made of the penetration of several types of rock by water jets of velocities up to about 1000 m/s (pressures about 5000 atm). It was found that a 1 mm diameter jet drills a cylindrical hole about 5 mm in diameter. The pressure that the water jet produces at the bottom of such holes was measured and shown to fall off to about one-tenth of the nozzle pressure at a hole depth of about 4 cm.


1995 ◽  
Vol 23 (2) ◽  
pp. 116-135 ◽  
Author(s):  
H. Shiobara ◽  
T. Akasaka ◽  
S. Kagami ◽  
S. Tsutsumi

Abstract The contact pressure distribution and the rolling resistance of a running radial tire under load are fundamental properties of the tire construction, important to the steering performance of automobiles, as is well known. Many theoretical and experimental studies have been previously published on these tire properties. However, the relationships between tire performances in service and tire structural properties have not been clarified sufficiently due to analytical and experimental difficulties. In this paper, establishing a spring support ring model made of a composite belt ring and a Voigt type viscoelastic spring system of the sidewall and the tread rubber, we analyze the one-dimensional contact pressure distribution of a running tire at speeds of up to 60 km/h. The predicted distribution of the contact pressure under appropriate values of damping coefficients of rubber is shown to be in good agreement with experimental results. It is confirmed by this study that increasing velocity causes the pressure to rise at the leading edge of the contact patch, accompanied by the lowered pressure at the trailing edge, and further a slight movement of the contact area in the forward direction.


1973 ◽  
Vol 24 (2) ◽  
pp. 120-128 ◽  
Author(s):  
J E Barsby

SummarySolutions to the problem of separated flow past slender delta wings for moderate values of a suitably defined incidence parameter have been calculated by Smith, using a vortex sheet model. By increasing the accuracy of the finite-difference technique, and by replacing Smith’s original nested iteration procedure, to solve the non-linear simultaneous equations that arise, by a Newton’s method, it is possible to extend the range of the incidence parameter over which solutions can be obtained. Furthermore for sufficiently small values of the incidence parameter, new and unexpected results in the form of vortex systems that originate inboard from the leading edge have been discovered. These new solutions are the only solutions, to the author’s knowledge, of a vortex sheet leaving a smooth surface.Interest has centred upon the shape of the finite vortex sheet, the position of the isolated vortex, and the lift, and variations of these quantities are shown as functions of the incidence parameter. Although no experimental evidence is available, comparisons are made with the simpler Brown and Michael model in which all the vorticity is assumed to be concentrated onto an isolated line vortex. Agreement between these two models becomes very close as the value of the incidence parameter is reduced.


2007 ◽  
Vol 539-543 ◽  
pp. 3261-3266 ◽  
Author(s):  
Iulian Radu ◽  
Dong Yang Li

The near-equiatomic TiNi alloy has been demonstrated to possess high wear resistance, which largely benefits from its pseudoelasticity (PE). However, the PE occurs only in a small temperature range, which makes the wear resistance of this alloy unstable as temperature changes, caused by environmental instability or frictional heating. Therefore, enlarging the working temperature of PE could considerably improve this alloy as a novel wear-resistant material. One possible approach is to develop a self-built temperature-dependent internal stress field by taking the advance of the difference in thermal expansion between the pseudoelastic matrix and a reinforcing phase. Such a T-dependent internal stress could adjust the martensitic transformation temperature to respond changes in environmental temperature so that the temperature range of PE could be enlarged, thus leading to a wide temperature range in which the minimum wear loss is retained. Research was conducted to investigate effects of an added second phase having a negative thermal expansion (NTE) coefficient on the wear resistance of a near-equiatomic TiNi alloy. It was demonstrated that the temperature range of this modified material in which the wear loss dropped was enlarged. In addition, the wear resistance of such a TiNi-matrix composite was on one order of magnitude higher than that of unmodified TiNi alloy.


Tribology ◽  
2006 ◽  
Author(s):  
Steven R. H. Barrett ◽  
Alexander H. Slocum

The rolling/sliding contact of a hard cylinder on a viscoelastic layer is re-examined. The one-dimensional Maxwell model, with the addition of a parallel spring, is used to model the normal stiffness of the viscoelastic layer A solution for the pressure distribution is presented. It is shown that the maximum tractive force that the cylinder can sustain before complete sliding is a function of the sense and magnitude of the rolling velocity. Two regimes of loading are considered - constant cylinder normal force and constant cylinder indentation.


2020 ◽  
Vol 39 (1) ◽  
Author(s):  
D. Ohlendorf ◽  
K. Kerth ◽  
W. Osiander ◽  
F. Holzgreve ◽  
L. Fraeulin ◽  
...  

Abstract Background The aim of this study was to collect standard reference values of the weight and the maximum pressure distribution in healthy adults aged 18–65 years and to investigate the influence of constitutional parameters on it. Methods A total of 416 healthy subjects (208 male / 208 female) aged between 18 and 65 years (Ø 38.3 ± 14.1 years) participated in this study, conducted 2015–2019 in Heidelberg. The age-specific evaluation is based on 4 age groups (G1, 18–30 years; G2, 31–40 years; G3, 41–50 years; G4, 51–65 years). A pressure measuring plate FDM-S (Zebris/Isny/Germany) was used to collect body weight distribution and maximum pressure distribution of the right and left foot and left and right forefoot/rearfoot, respectively. Results Body weight distribution of the left (50.07%) and right (50.12%) foot was balanced. There was higher load on the rearfoot (left 54.14%; right 55.09%) than on the forefoot (left 45.49%; right 44.26%). The pressure in the rearfoot was higher than in the forefoot (rearfoot left 9.60 N/cm2, rearfoot right 9.51 N/cm2/forefoot left 8.23 N/cm2, forefoot right 8.59 N/cm2). With increasing age, the load in the left foot shifted from the rearfoot to the forefoot as well as the maximum pressure (p ≤ 0.02 and 0.03; poor effect size). With increasing BMI, the body weight shifted to the left and right rearfoot (p ≤ 0.001, poor effect size). As BMI increased, so did the maximum pressure in all areas (p ≤ 0.001 and 0.03, weak to moderate effect size). There were significant differences in weight and maximum pressure distribution in the forefoot and rearfoot in the different age groups, especially between younger (18–40 years) and older (41–65 years) subjects. Discussion Healthy individuals aged from 18 to 65 years were found to have a balanced weight distribution in an aspect ratio, with a 20% greater load of the rearfoot. Age and BMI were found to be influencing factors of the weight and maximum pressure distribution, especially between younger and elder subjects. The collected standard reference values allow comparisons with other studies and can serve as a guideline in clinical practice and scientific studies.


1989 ◽  
Vol 111 (1) ◽  
pp. 13-20 ◽  
Author(s):  
A. Bejan

This paper focuses on the phenomenon of melting and lubrication by the sliding contact between a phase-change material and a smooth flat slider. The first part of the study considers the limit in which the melting is due primarily to “direct heating,” that is, to the temperature difference between the solid slider and the melting point of the phase-change material. It is shown that in this limit the relative motion gap has a uniform thickness and that the friction factor decreases as both the normal force and the temperature difference increase. The second part considers the limit where the melting is caused mainly by the frictional heating of the liquid formed in the relative motion gap. This gap turns out to have a converging-diverging shape that varies with the parameters of the problem. As the normal force increases, a larger fraction of the melt is pushed out through the upstream opening of the relative motion gap. Means for calculating the melting speed, the friction factor, and the temperature rise along the slider surface are developed.


2018 ◽  
Vol 765 ◽  
pp. 199-203
Author(s):  
Takahiro Ohashi ◽  
Xin Tong ◽  
Zi Jie Zhao ◽  
Hamed Mofidi Tabatabaei ◽  
Tadashi Nishihara

In this study, the authors evaluated pressure distribution on a backing plate in friction-stir processing (FSP) utilizing an embedded pressure pin connected to a load sensor. They conducted FSP on aluminum alloy plates repeatedly offsetting the path-lines from the center of the pin and recorded change of forming pressure with tool position, which was compiled from the bearing load of the pin. The authors mapped the results to visualize the two-dimensional contact pressure distribution on a backing plate during FSP. They then compared the height distribution of the wall fabricated by friction-stir forming (FSF) utilizing a die having a groove with the observed distribution of pressure. Consequently, maximum pressure was observed beneath the rim of the tool probe at the retreating side (RS), and the highest points of the wall were observed at the RS.


Sign in / Sign up

Export Citation Format

Share Document