A discussion on deformation of solids by the impact of liquids, and its relation to rain damage in aircraft and missiles, to blade erosion in steam turbines, and to cavitation erosion - Some aspects of rock cutting by high speed water jets

When rocks are cut in coal mines by steel picks, frictional heating sometimes causes ignition of methane; high speed water jets may provide a method of cutting which is free from this hazard. A high speed water jet emerging from a nozzle slows down with increasing distance from the nozzle and breaks up into water drops. Studies were made of the behaviour of water jets: in most of the experiments the jets were produced by pressures of 600 atm., but some results are given of experiments at pressures up to 5000 atm. The jets were examined by short exposure optical photography with several different methods of illumination (parallel transmitted, diffuse, and schlieren) and by X-ray photography. In order to find out how the jet velocity decays with distance from a nozzle, and to compare nozzle designs, a target plate containing a hole smaller than the jet diameter was placed so that the jet impinged at right angles on to it, and the target plate was moved until the maximum pressure at the hole was found: this was measured for different distances from the nozzle. Nozzle shapes suggested in literature for minimizing jet dispersion were studied and an empirical investigation of a variety of nozzle shapes was carried out. Several nozzle shapes were found which gave good results, i.e. the maximum pressure on the target plate was half the pump pressure at a distance of about 350 nozzle diameters. In many cutting applications the first stage in the process would be the impingement of a water jet on a surface at right angles. The initial cutting would depend upon the stress distribution within the target, which in turn would depend upon the pressure distribution produced by the water jet on the surface. A theory is given of the pressure distribution on the target plate, which predicts that the pressure will fall to zero at about 2.6 jet radii: this was found to be in good agreement with experiments. Preliminary studies were made of the penetration of several types of rock by water jets of velocities up to about 1000 m/s (pressures about 5000 atm). It was found that a 1 mm diameter jet drills a cylindrical hole about 5 mm in diameter. The pressure that the water jet produces at the bottom of such holes was measured and shown to fall off to about one-tenth of the nozzle pressure at a hole depth of about 4 cm.

2021 ◽  
pp. 014459872110520
Author(s):  
Yabin Gao ◽  
Xin Xiang ◽  
Ziwen Li ◽  
Xiaoya Guo ◽  
Peizhuang Han

Hydraulic slotting has become one of the most common technologies adopted to increase permeability in low permeability in coal field seams. There are many factors affecting the rock breaking effects of water jets, among which the impact force cannot be ignored. To study the influencing effects of contact surface shapes on jet flow patterns and impact force, this study carried out experiments involving water jet impingement planes and boreholes under different pressure conditions. The investigations included numerical simulations under solid boundary based on gas–liquid coupling models and indoor experiments under high-speed camera observations. The results indicated that when the water jets impinged on different contact surfaces, obvious reflection flow occurred, and the axial velocity had changed through three stages during the development process. Moreover, the shapes of the contact surfaces, along with the outlet pressure, were found to have impacts on the angles and velocities of the reflected flow. The relevant empirical formulas were summarized according to this study's simulation results. In addition, the flow patterns and shapes of the contact surfaces were observed to have influencing effects on the impact force. An impact force model was established in this study based on the empirical formula, and the model was verified using both the simulation and experimental results. It was confirmed that the proposed model could provide important references for the optimization of the technical parameters water jet systems, which could provide theoretical support for the further intelligent and efficient transformation of coal mine drilling water jet technology.


2018 ◽  
Vol 192 ◽  
pp. 02028
Author(s):  
Hassan Zulkifli Abu ◽  
Ibrahim Aniza ◽  
Mohamad Nor Norazman

Small-scale blast tests were carried out to observe and measure the influence of sandy soil towards explosive blast intensity. The tests were to simulate blast impact imparted by anti-vehicular landmine to a lightweight armoured vehicle (LAV). Time of occurrence of the three phases of detonation phase in soil with respect to upward translation time of the test apparatus were recorded using high-speed video camera. At the same time the target plate acceleration was measured using shock accelerometer. It was observed that target plate deformation took place at early stage of the detonation phase before the apparatus moved vertically upwards. Previous data of acceleration-time history and velocity-time history from air blast detonation were compared. It was observed that effects of soil funnelling on blast wave together with the impact from soil ejecta may have contributed to higher blast intensity that characterized detonation in soil, where detonation in soil demonstrated higher plate velocity compared to what occurred in air blast detonation.


2021 ◽  
Vol 157 (A1) ◽  
Author(s):  
T Arnold ◽  
J Lavroff ◽  
M R Davis

Trim tabs form an important part of motion control systems on high-speed watercraft. By altering the pitch angle, significant improvements in propulsion efficiency can be achieved by reducing overall resistance. For a ship in heavy seas, trim tabs can also be used to reduce structural loads by changing the vessel orientation in response to encountered waves. In this study, trials have been conducted in the University of Tasmania hydraulics laboratory using a closed- circuit water tunnel to measure model scale trim tab forces. The model scale system replicates the stern tabs on the full- scale INCAT Tasmania 112 m high-speed wave-piercer catamaran. The model was designed for total lift force measurement and pressure tappings allowed for pressures to be measured at fixed locations on the underside of the hull and tab. This investigation examines the pressures at various flow velocities and tab deflection angles for the case of horizontal vessel trim. A simplified two-dimensional CFD model of the hull and tab has also been analysed using ANSYS CFX software. The results of model tests and CFD indicate that the maximum pressure occurs in the vicinity of the tab hinge and that the pressure distribution is long-tailed in the direction forward of the hinge. This accounts for the location of the resultant lift force, which is found to act forward of the tab hinge.


Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 168 ◽  
Author(s):  
Agostino Lauria ◽  
Giancarlo Alfonsi ◽  
Ali Tafarojnoruz

Ski jump spillways are frequently implemented to dissipate energy from high-speed flows. The general feature of this structure is to transform the spillway flow into a free jet up to a location where the impact of the jet creates a plunge pool, representing an area for potential erosion phenomena. In the present investigation, several tests with different ski jump bucket angles are executed numerically by means of the OpenFOAM® digital library, taking advantage of the Reynolds-averaged Navier–Stokes equations (RANS) approach. The results are compared to those obtained experimentally by other authors as related to the jet length and shape, obtaining physical insights into the jet characteristics. Particular attention is given to the maximum pressure head at the tailwater. Simple equations are proposed to predict the maximum dynamic pressure head acting on the tailwater, as dependent upon the Froude number, and the maximum pressure head on the bucket. Results of this study provide useful suggestions for the design of ski jump spillways in dam construction.


2019 ◽  
Vol 2019 ◽  
pp. 1-18
Author(s):  
Xiaohui Liu ◽  
Ping Tang ◽  
Qi Geng ◽  
Xuebin Wang

It has been found that the impact performance of water jets can be changed by its properties, which include pressure, additive, and mode of jet. Thus, an abrasive water jet (AWJ) has been developed as a new method. However, there is little research on the effect of abrasive concentration on the impact performance of abrasive jets. Thus, the SPH method is used to establish an abrasive water jet crushing concrete model to study the effect of abrasive concentration on the impact force, concrete internal energy, abrasive particle distribution, crushing depth, and damage and crushing efficiencies under different concrete compressive strengths and abrasive densities. The results indicate that there is little effect of the abrasive concentration on the peak impact force under different compressive strengths and abrasive densities, while the mean impact force tends to increase linearly with the abrasive concentration. The internal energy of the concrete increases stepwise with the abrasive concentration under different compressive strengths and abrasive densities. The concentration of 10%∼20% is the rapid increasing stage. The crushing depth and damage efficiencies are all maximum at a concentration of 20% under different compressive strengths and abrasive densities. After the concrete was impacted by the water from the water jet, it is divided into rebounding particles and intrusive particles. The more the intrusive particles, the easier the concrete to be crushed and damaged.


1976 ◽  
Vol 98 (4) ◽  
pp. 596-601 ◽  
Author(s):  
S. R. Kilaparti ◽  
R. A. Burton

Sliding contact in seals is known to change at high sliding speed from initially uniform pressure to a deformed state where contact is restricted to small patches of the surface. An earlier analysis of such contact was based upon the assumption of uniform pressure on the small patches. The present study draws upon a thermoelastic influence function to provide simultaneous equations for pressure on subdivisions of the patches. The final result is that at high wear rate (and, consequently, high traversal speed of the patch along the surface of the more conductive body of the contacting pair) the pressure distribution becomes roughly triangular with the maximum pressure toward the leading edge of the patch.


2022 ◽  
Vol 934 ◽  
Author(s):  
G.-Y. Yuan ◽  
B.-Y. Ni ◽  
Q.-G. Wu ◽  
Y.-Z. Xue ◽  
D.-F. Han

Ice breaking has become one of the main problems faced by ships and other equipment operating in an ice-covered water region. New methods are always being pursued and studied to improve ice-breaking capabilities and efficiencies. Based on the strong damage capability, a high-speed water jet impact is proposed to be used to break an ice plate in contact with water. A series of experiments of water jet impacting ice were performed in a transparent water tank, where the water jets at tens of metres per second were generated by a home-made device and circular ice plates of various thicknesses and scales were produced in a cold room. The entire evolution of the water jet and ice was recorded by two high-speed cameras from the top and front views simultaneously. The focus was the responses of the ice plate, such as crack development and breakup, under the high-speed water jet loads, which involved compressible pressure ${P_1}$ and incompressible pressure ${P_2}$ . According to the main cause and crack development sequence, it was found that the damage of the ice could be roughly divided into five patterns. On this basis, the effects of water jet strength, ice thickness, ice plate size and boundary conditions were also investigated. Experiments validated the ice-breaking capability of the high-speed water jet, which could be a new auxiliary ice-breaking method in the future.


2021 ◽  
Vol 154 (A4) ◽  
Author(s):  
S Wang ◽  
C Guedes Soares

The two-dimensional hydrodynamic problem of a symmetric wedge vertically impacting in calm water is analysed by using an explicit finite element method based on a multi-material Eulerian formulation. The slam-induced loads on wedges with different deadrise angle at a constant velocity are calculated, including pressure distribution, maximum pressure coefficient, force coefficient and time history of vertical force, which are compared with available theoretical and analytical results. The time evolution of pressure distribution and free surface elevation are presented. Furthermore, the effects of impact velocity are investigated. It shows that this method is capable of predicting the local slamming loads, and as well assessing the effects of the deadrise angle and the impact velocity on the slamming pressure for the wedge-shape section.


2015 ◽  
Author(s):  
Carolyn Q. Judge ◽  
John A. Judge ◽  
Christine M. Ikeda

High-speed planing boats are subject to repeated slamming impacts, which can cause structural damage and discomfort or injury to passengers. The structural and seakeeping aspects of the design of high-speed craft are mainly determined through empirical estimates of mean and peak pressures. The primary structural guideline (Allen and Jones, 1978) relies heavily on semi-empirical criteria that are not always accurate and have limited application. The Allen and Jones guidelines provide conservative estimates leading to sufficient structural design, but do not provide enough guidance to allow strategic reduction in structural weight. Structural design depends on the hull bottom pressures while information about the magnitudes of peak pressures, time durations, and locations along the hull is generally not available. Model tests conducted at the US Naval Academy have measured bottom pressures on a prismatic planing hull geometry during operation in waves (both regular and irregular). Pressures were measured at point locations and using a two-dimensional pressure pad to examine how pressures change in both time and space during a water impact. Rosen (2005) presents a method for reconstructing the momentary pressure distribution during a hull-water impact. This method allows the measurements of a propagating pressure segment in one position of the hull at one instant in time to be associated with other positions at other instants in time (as determined from several different point pressure measurements). Morabito (2014) presents an empirical method for calculating the pressure distribution on the bottom of prismatic planing hulls. The method can be extended to the impact problem by use of an “equivalent” planing velocity. This paper compares the planing pressures predicted by Morabito's empirical method with the recreated pressure distribution determined from Rosen's method.


1985 ◽  
Vol 107 (2) ◽  
pp. 220-223 ◽  
Author(s):  
B. Jacobson

High pressure rheology of lubricants under transient pressure and shear stress loads is studied experimentally. The total compression time is about 140 μs and the maximum pressure during the impact time is 5.5 GPa. The results from this high speed test apparatus agree well with static tests of the shear strength increase with pressure up to 2.2 GPa.


Sign in / Sign up

Export Citation Format

Share Document