Model Verification of Mixed Dynamic Systems

1978 ◽  
Vol 100 (2) ◽  
pp. 266-273 ◽  
Author(s):  
J. D. Chrostowski ◽  
D. A. Evensen ◽  
T. K. Hasselman

A general method is presented for using experimental data to verify math models of “mixed” dynamic systems. The term “mixed” is used to suggest applicability to combined systems which may include interactive mechanical, hydraulic, electrical, and conceivably other types of components. Automatic matrix generating procedures are employed to facilitate the modeling of passive networks (e.g., hydraulic, electrical). These procedures are augmented by direct matrix input which can be used to complement the network model. The problem of model verification is treated in two parts; verification of the basic configuration of the model and determination of the parameter values associated with that configuration are addressed sequentially. Statistical parameter estimation is employed to identify selected parameter values, recognizing varying degrees of uncertainty with regard to both experimental data and analytical results. An example problem, involving a coupled hydraulic-mechanical system, is included to demonstrate application of the method.

2019 ◽  
Vol 3 (2) ◽  
pp. 56 ◽  
Author(s):  
Johannes Höller ◽  
Patricia Bickert ◽  
Patrick Schwartz ◽  
Martin von Kurnatowski ◽  
Joachim Kerber ◽  
...  

Many thermodynamic models used in practice are at least partially empirical and thus require the determination of certain parameters using experimental data. However, due to the complexity of the models involved as well as the inhomogeneity of available data, a straightforward application of basic methods often does not yield a satisfactory result. This work compares three different strategies for the numerical solution of parameter estimation problems, including errors both in the input and in the output variables. Additionally, the new idea to apply multi-criteria optimization techniques to parameter estimation problems is presented. Finally, strategies for the estimation and propagation of the model errors are discussed.


2011 ◽  
Vol 22 (18) ◽  
pp. 2127-2136 ◽  
Author(s):  
Yongqiang Liu ◽  
Shaopu Yang ◽  
Yingying Liao

A quantizing method, single parameter adjustment method (SPAM), is proposed so that the selection of controlled damping parameters of the magnetorheological (MR) damper models can be well founded. By using SPAM, only one parameter is identified each time, and the controlled damping parameters are selected according to their damping controllability. The relationships between the selected parameters and applied currents are determined by curve fitting. Genetic algorithm (GA) and pattern search (PS) are used to identify parameter values of the MR damper models. A modified Bouc–Wen model is considered and its parameters are obtained using these methods. Then the experimental data with different frequencies, amplitudes, and currents are used to verify the proposed SPAM. The results show that the simulation data agree well with the measured experimental data. Compared with the traditional identification method that relies on assumption and visual inspection, errors produced by SPAM are greatly reduced. At last, Bouc–Wen model and modified Dahl model are considered and analyzed using SPAM.


Author(s):  
E. Naranjo

Equilibrium vesicles, those which are the stable form of aggregation and form spontaneously on mixing surfactant with water, have never been demonstrated in single component bilayers and only rarely in lipid or surfactant mixtures. Designing a simple and general method for producing spontaneous and stable vesicles depends on a better understanding of the thermodynamics of aggregation, the interplay of intermolecular forces in surfactants, and an efficient way of doing structural characterization in dynamic systems.


2020 ◽  
Vol 0 (4) ◽  
pp. 43-51
Author(s):  
A. L. Vorontsov ◽  
◽  
I. A. Nikiforov ◽  

Formulae have been obtained that are necessary to calculate cumulative deformation in the process of straitened extrusion in the central area closed to the working end of the counterpunch. The general method of plastic flow proposed by A. L. Vorontsov was used. The obtained formulae allow one to determine the deformed state of a billet in any point of the given area. The formulae should be used to take into account the strengthening of the extruded material.


2006 ◽  
Vol 41 (1) ◽  
pp. 72-83 ◽  
Author(s):  
Zhe Zhang ◽  
Eric R. Hall

Abstract Parameter estimation and wastewater characterization are crucial for modelling of the membrane enhanced biological phosphorus removal (MEBPR) process. Prior to determining the values of a subset of kinetic and stoichiometric parameters used in ASM No. 2 (ASM2), the carbon, nitrogen and phosphorus fractions of influent wastewater at the University of British Columbia (UBC) pilot plant were characterized. It was found that the UBC wastewater contained fractions of volatile acids (SA), readily fermentable biodegradable COD (SF) and slowly biodegradable COD (XS) that fell within the ASM2 default value ranges. The contents of soluble inert COD (SI) and particulate inert COD (XI) were somewhat higher than ASM2 default values. Mixed liquor samples from pilot-scale MEBPR and conventional enhanced biological phosphorus removal (CEBPR) processes operated under parallel conditions, were then analyzed experimentally to assess the impact of operation in a membrane-assisted mode on the growth yield (YH), decay coefficient (bH) and maximum specific growth rate of heterotrophic biomass (µH). The resulting values for YH, bH and µH were slightly lower for the MEBPR train than for the CEBPR train, but the differences were not statistically significant. It is suggested that MEBPR simulation using ASM2 could be accomplished satisfactorily using parameter values determined for a conventional biological phosphorus removal process, if MEBPR parameter values are not available.


1992 ◽  
Vol 26 (1-2) ◽  
pp. 407-415 ◽  
Author(s):  
D. A. Barton ◽  
J. J. McKeown ◽  
W. Chudyk

A model of organic compound removal by biological wastewater treatment processes receiving pulp and paper industry wastewaters has been developed and initial model verification performed at a single mill site. This paper presents the results of further model verification conducted at multiple mill sites, including replication of the original site. In addition, VOC losses at other unit processes are quantified. Activated sludge basin chloroform volatilization rates are predicted to within twelve percent of the measured rates. Predicted overall methanol removals are consistent with observed removals although difficulties encountered during off-gas sampling preclude determination of the extent of removal due to volatilization.


1992 ◽  
Vol 57 (9) ◽  
pp. 1905-1914
Author(s):  
Miroslav Bleha ◽  
Věra Šumberová

The equilibrium sorption of uni-univalent electrolytes (NaCl, KCl) in heterogeneous cation exchange membranes with various contents of the ion exchange component and in ion exchange membranes Ralex was investigated. Using experimental data which express the concentration dependence of equilibrium sorption, validity of the Donnan relation for the systems under investigation was tested and values of the Glueckauf inhomogeneity factor for Ralex membranes were determined. Determination of the equilibrium sorption allows the effect of the total content of internal water and of the ion-exchange capacity on the distribution coefficients of the electrolyte to be determined.


Author(s):  
Emre Kahramanoglu ◽  
Silvia Pennino ◽  
Huseyin Yilmaz

The hydrodynamic characteristics of the planing hulls in particular at the planing regime are completely different from the conventional hull forms and the determination of these characteristics is more complicated. In the present study, calm water hydrodynamic characteristics of planing hulls are investigated using a hybrid method. The hybrid method combines the dynamic trim and sinkage from the Zarnick approach with the Savitsky method in order to calculate the total resistance of the planing hull. Since the obtained dynamic trim and sinkage values by using the original Zarnick approach are not in good agreement with experimental data, an improvement is applied to the hybrid method using a reduction function proposed by Garme. The numerical results obtained by the hybrid and improved hybrid method are compared with each other and available experimental data. The results indicate that the improved hybrid method gives better results compared to the hybrid method, especially for the dynamic trim and resistance. Although the results have some discrepancies with experimental data in terms of resistance, trim and sinkage, the improved hybrid method becomes appealing particularly for the preliminary design stage of the planing hulls.


Sign in / Sign up

Export Citation Format

Share Document