Contribution to the Correlation Theory for the Grinding Process

1964 ◽  
Vol 86 (2) ◽  
pp. 85-94 ◽  
Author(s):  
Janez Peklenik

The random input (cutting elements of the grinding wheel) and outputs (surface roughness and the tool wear) of a grinding process are investigated. The influence of the physical and geometrical properties of the grinding wheels with regard to averages, correlation functions, and dispersion spectra for the dressed and worn cutting space is determined. The transfer function of the grinding process in terms of the surface roughness of the workpiece and the wear of the grinding wheel is developed, and the cutting ability of the grinding wheel is defined and investigated.

2014 ◽  
Vol 1017 ◽  
pp. 237-242
Author(s):  
Heike Kitzig ◽  
Nima Jandaghi ◽  
Bahman Azarhoushang ◽  
Alireza Vesali

In order to decrease the negative environmental impacts of the cutting fluids (for example, disposal of grinding sludge) and also to reduce the manufacturing costs and the required space for the machines the dry grinding can be a conceivable alternative for the conventional grinding processes. Nevertheless, dry grinding has not been widely introduced into industry because of the high temperature generated in the grinding zone and difficulties of heat transfer without coolants. Selection of the proper grinding wheel bonds, grit sizes and concentration has significant effect on the grinding performance and the generated heat in the contact zone. This paper addresses the effects of the grinding wheel bond and the concentration on the dry grinding process efficiency through comparing the results of the carried out experiments with three resin bonded cBN-cup-wheels, each consisting different bond components. For this purpose, surface roughness and thermal damages during dry and wet grinding (utilizing grinding oil) by three different resin bonds were measured. The results show almost identical surface roughness values for dry and wet grinding. Furthermore, using the resin-kryolith-graphite bonded wheel leads to a reduction in thermal damages on the workpiece. Through different experiments, it was shown that the different bonds, used in this study, have significant influence on the chip loading of the grinding wheels. This is contributed to the different chip formation mechanisms and induced grinding temperatures when grinding by the different wheel bonds.


2021 ◽  
Author(s):  
Qingfeng Ai ◽  
Jahangir Khosravi ◽  
Bahman Azarhoushang ◽  
Amir Daneshi ◽  
Björn Becker

Abstract In this study, an additive manufacturing process based on digital light processing was employed for quick, flexible, and economical fabrication of resin-bonded SiC grinding tools. The grinding wheel has been fabricated using laboratory manufacturing processes that utilize ultraviolet-curable resins and conventional abrasives. Also, desirable geometries and features like integrated coolant holes, which are difficult or even almost impossible to manufacture by conventional processes, are easily achievable. Grinding experiments were carried out by different process parameters, and with two different grinding wheels, i.e. with and without cooling channels with different concentrations (25 wt.% and 50 wt.% grains) to evaluate the grinding efficiency of the produced tools. Grinding forces, tool wear, tool loading, and ground surface quality were measured and analyzed. The wear rates of the grinding wheels with cooling channels were generally less than those without cooling channels, particularly in the deep grinding processes with large contact areas. Grinding tests on a hardened steel have shown that the integration of cooling lubricant channels almost prevents the wheel loading. In addition, by increasing the cutting speed (from 15 to 30 m/s) and decreasing the feed rate (from 10 to 2 m/min) the grinding wheel wear was significantly reduced. Furthermore, surface grinding of aluminum resulted in surface roughness values (Ra) in the range of 1 µm to 2.5 µm, while a Ra of about 0.2 µm was achieved by grinding hardened steel (100Cr6) with the same grinding conditions. Using the higher SiC-grain concentration (50 wt.%), it was determined that the surface roughness was 50% finer. Additionally the tool wear was significantly reduced (up to 30 times depending on the process parameters). The wear characteristics of the grinding wheel was analyzed through a novel image processing system. Significant correlations were found between wear flat of grains and the increase in grinding forces due to the tool wear.


Author(s):  
Qingfeng Ai ◽  
Jahangir Khosravi ◽  
Bahman Azarhoushang ◽  
Amir Daneshi ◽  
Björn Becker

AbstractIn this study, an additive manufacturing process based on digital light processing was employed for a quick, flexible, and economical fabrication of resin bonded SiC grinding tools. The grinding wheel has been fabricated using laboratory manufacturing processes that utilize ultraviolet-curable resins and conventional abrasives. Also, desirable geometries and features like integrated coolant holes, which are difficult or even almost impossible to manufacture by conventional processes, are easily achievable. Grinding experiments were carried out by different process parameters, and with two different grinding wheels, i.e., with and without cooling channels with different concentrations (25 wt.% and 50 wt.% grains) to evaluate the grinding efficiency of the produced tools. Grinding forces, tool wear, tool loading, and ground surface quality were measured and analyzed. The wear rates of the grinding wheels with cooling channels were generally less than those without cooling channels, particularly in the deep grinding processes with large contact areas. Grinding tests on a hardened steel have shown that the integration of cooling lubricant channels almost prevents the wheel loading. In addition, by increasing the cutting speed (from 15 to 30 m/s) and decreasing the feed rate (from 10 to 2 m/min), the grinding wheel wear was significantly reduced. Furthermore, surface grinding of aluminum resulted in surface roughness values (Ra) in the range of 1 μm to 2.5 μm, while a Ra of about 0.2 μm was achieved by grinding hardened steel (100Cr6) with the same grinding conditions. Using the higher SiC-grain concentration (50 wt.%), it was determined that the surface roughness was 50% finer. Additionally the tool wear was significantly reduced (up to 30 times depending on the process parameters). The wear characteristics of the grinding wheel were analyzed through a novel image processing system. Significant correlations were found between the wear flat of grains and the increase in grinding forces due to the tool wear.


2021 ◽  
Vol 11 (9) ◽  
pp. 4128
Author(s):  
Peng-Zhan Liu ◽  
Wen-Jun Zou ◽  
Jin Peng ◽  
Xu-Dong Song ◽  
Fu-Ren Xiao

Passive grinding is a new rail grinding strategy. In this work, the influence of grinding pressure on the removal behaviors of rail material in passive grinding was investigated by using a self-designed passive grinding simulator. Meanwhile, the surface morphology of the rail and grinding wheel were observed, and the grinding force and temperature were measured during the experiment. Results show that the increase of grinding pressure leads to the rise of rail removal rate, i.e., grinding efficiency, surface roughness, residual stress, grinding force and grinding temperature. Inversely, the enhancement of grinding pressure and grinding force will reduce the grinding ratio, which indicates that service life of grinding wheel decreases. The debris presents dissimilar morphology under different grinding pressure, which reflects the distinction in grinding process. Therefore, for rail passive grinding, the appropriate grinding pressure should be selected to balance the grinding quality and the use of grinding wheel.


2016 ◽  
Vol 686 ◽  
pp. 125-130 ◽  
Author(s):  
Miroslav Neslušan ◽  
Jitka Baďurová ◽  
Anna Mičietová ◽  
Maria Čiliková

This paper deals with cutting ability of progressive Norton Quantum grinding wheel during grinding roll bearing steel 100Cr6 of hardness 61 HRC. Cutting ability of this wheel is compared with conventional grinding wheel and based on measurement of grinding forces as well as surface roughness. Results of experiments show that Norton Quantum grinding wheels are capable of long term grinding cycles at high removal rates without unacceptable occurrence of grinding chatter and surface burn whereas application of conventional wheel can produce excessive vibration and remarkable temper colouring of ground surface. Moreover, while Norton Quantum grinding wheel gives nearly constant grinding forces and surface roughness within ground length at higher removal rates, conventional grinding wheel (as that reported in this study) does not.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 115 ◽  
Author(s):  
Wojciech Kapłonek ◽  
Krzysztof Nadolny ◽  
Krzysztof Rokosz ◽  
Jocelyne Marciano ◽  
Mozammel Mia ◽  
...  

The development of modern jet engines would not be possible without dynamically developed nickel–chromium-based superalloys, such as INCONEL® The effective abrasive machining of above materials brings with it many problems and challenges, such as intensive clogging of the grinding wheel active surface (GWAS). This extremely unfavorable effect causes a reduction in the cutting ability of the abrasive tool as well as increase to grinding forces and friction in the whole process. The authors of this work demonstrate that introduction of a synthetic organosilicon polymer-based impregnating substance to the GWAS can significantly improve the effects of carrying out the abrasive process of hard-to-cut materials. Experimental studies were carried out on a set of a silicon-treated small-sized sol–gel alumina 1-35×10×10-SG/F46G10VTO grinding wheels. The set contained abrasive tools after the internal cylindrical grinding process of INCONEL® alloy 600 rings and reference abrasive tools. The condition of the GWAS after the impregnation process was studied, including imaging and measurements of its microgeometry using confocal laser scanning microscopy (CLSM), microanalysis of its elemental distribution using energy dispersive X-ray fluorescence (EDXRF), and the influence of impregnation process on the grinding temperature using infrared thermography (IRT). The obtained results confirmed the correctness of introduction of the impregnating substance into the grinding wheel structure, and it was possible to obtain an abrasive tool with a recommended characteristic. The main favorable features of treated grinding wheel concerning the reduction of adhesion between the GWAS and grinding process products (limitation of the clogging phenomenon) as well as reduction of friction in the grinding process, which has a positive effect on the thermal conditions in the grinding zone.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2288
Author(s):  
Roberto Spina ◽  
Bruno Cavalcante

This paper investigates the grinding process on unreinforced (PA66) and reinforced glass-fiber polyamide 6,6 (PA66 GF30) with Al2O3 and SiC abrasive wheels. Both materials were ground by varying rotations, workpiece infeed speed, depth of cuts for sequential roughing/finishing steps. Dry and liquid coolant conditions were also considered during the grinding process to evaluate the effects on part quality. The surface roughness was used to assess the quality of the final products with several parameter combinations, identifying the induced process trends. The results show that at the end of the finishing step, the surface roughness Rz was lower than 4 μm, attaining the lowest value of 1.34 μm for PA66 specimens. The analysis also suggested the choice of the Al2O3 grinding wheel to reach the lowest Rz values for both materials.


2020 ◽  
Vol 4 (4) ◽  
pp. 114
Author(s):  
Akira Mizobuchi ◽  
Atsuyoshi Tashima

This study addresses the wet grinding of large stainless steel sheets, because it is difficult to subject them to dry grinding. Because stainless steel has a low thermal conductivity and a high coefficient of thermal expansion, it easily causes grinding burn and thermal deformation while dry grinding on the wheel without applying a cooling effect. Therefore, wet grinding is a better alternative. In this study, we made several types of grinding wheels, performed the wet grinding of stainless steel sheets, and identified the wheels most suitable for the process. As such, this study developed a special accessory that could be attached to a wet grinding workpiece. The attachment can maintain constant pressure, rotational speed, and supply grinding fluid during work. A set of experiments was conducted to see how some grinding wheels subjected to some grinding conditions affected the surface roughness of a workpiece made of a stainless steel sheet (SUS 304, according to Japanese Industrial Standards: JIS). It was found that the roughness of the sheet could be minimized when a polyvinyl alcohol (PVA) grinding wheel was used as the grinding wheel and tap water was used as the grinding fluid at an attachment pressure of 0.2 MPa and a rotational speed of 150 rpm. It was shown that a surface roughness of up to 0.3 μm in terms of the arithmetic average height could be achieved if the above conditions were satisfied during wet grinding. The final surface roughness was 0.03 μm after finish polishing by buffing. Since the wet grinding of steel has yet to be studied in detail, this article will serve as a valuable reference.


Author(s):  
Krzysztof Nadolny ◽  
Witold Habrat

This article offers an overview of 11 grinding wheel construction modifications used in the peripheral grinding of flat, shaped, internal, and external cylindrical surfaces, when grinding wheels made of superabrasive grains are used (natural and synthetic diamonds, as well as mono- and microcrystalline cubic boron nitride). The text contains characteristics of grinding wheels with: bubble corundum grains, glass-crystalline bond, conic chamfer, zones of different diameters, a centrifugal provision of the coolant into the grinding zone, aggregate grains, zone-diversified structure, as well as impregnated (self-lubricating), multiporous, segment and “intelligent” grinding wheels. Each of the presented structural modifications were described by giving construction scheme, used abrasive grains, range of applications, advantages as well as disadvantages. Modifications of the grinding wheel construction allow for effective improvement of both the conditions and the results of the grinding process. A wide range of the known modifications allow for their proper selection depending on the required criteria of effective evaluation and taking into account the specific characteristics of superabrasive grains. As a result, it is possible to obtain positive influence on a number of technological factors of the grinding process. The described modifications of the grinding wheel structure can be also an inspiration and the basis for creating new solutions in this field.


Author(s):  
Sebastian Barth ◽  
Michael Rom ◽  
Christian Wrobel ◽  
Fritz Klocke

The prediction of the grinding process result, such as the workpiece surface quality or the state of the edge zone depending on the used grinding wheel is still a great challenge for today's manufacturers and users of grinding tools. This is mainly caused by an inadequate predictability of force and temperature affecting the process. The force and the temperature strongly depend on the topography of the grinding wheel, which comes into contact with the workpiece during the grinding process. The topography of a grinding wheel mainly depends on the structure of the grinding wheel, which is determined by the recipe-dependent volumetric composition of the tool. So, the structure of a grinding tool determines its application behavior strongly. As result, the knowledge-based prediction of the grinding wheel topography and its influence on the machining behavior will only be possible if the recipe-dependent grinding wheel structure is known. This paper presents an innovative approach for modeling the grinding wheel structure and the resultant grinding wheel topography. The overall objective of the underlying research work was to create a mathematical-generic grinding tool model in which the spatial arrangement of the components, grains, bond, and pores, is simulated in a realistic manner starting from the recipe-dependent volumetric composition of a grinding wheel. This model enables the user to determine the resulting grinding wheel structure and the grinding wheel topography of vitrified and synthetic resin-bonded cubic boron nitride (CBN) grinding wheels depending on their specification and thus to predict their application behavior. The originality of the present research results is a generic approach for the modeling of grinding tools, which takes into account the entire grinding wheel structure to build up the topography. Therefore, original mathematical methods are used. The components of grinding wheels are analyzed, and distribution functions of the component's positions in the tools are determined. Thus, the statistical character of the grinding wheel structure is taken into account in the developed model. In future, the presented model opens new perspectives in order to optimize and to increase the productivity of grinding processes.


Sign in / Sign up

Export Citation Format

Share Document