Dynamic Design of a High-Speed Motorized Spindle-Bearing System

2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Shuyun Jiang ◽  
Shufei Zheng

This technical brief presents a dynamic model based on the traditional transfer matrix method (TMM) and Jones–Harris nonlinear rolling bearing model to study the effects of the extended structure parameters on the vibration behavior of a high-speed motorized spindle-bearing system. The first critical speed and the dynamic stiffness of the high-speed motorized spindle-bearing system are systematically studied. A design sensitivity analysis of the structure parameters is then conducted to identify the main factor to affect the first critical speed of the spindle-bearing system. The results show that the processing condition, the shaft shoulder, the dimension of motor, and the bearing arrangement are sensitive to the spindle dynamic behavior. The TMM model of the spindle-bearing system is verified by measuring the high-speed motorized spindle overall dynamic stiffness.

2013 ◽  
Vol 712-715 ◽  
pp. 1435-1438
Author(s):  
Xiao Ming Dai ◽  
Hong Jun Wang ◽  
Qiu Shi Han

The research on the dynamics modeling in theory and experiment for the rolling bearing-motorized spindle system including bearing modeling and spindle-bearing system modeling is reviewed. The main factors influencing the motorized spindle system dynamics are analyzed combined with the pratical engineering, which include thermal characteristics, high-speed effects and electromechanical coupling. The methods for dynamics modeling including the transfer matrix method and finite element method are related. Finally, the research directions on the dynamics of rolling-bearing motorized spindle system are forecasted.


2020 ◽  
Vol 12 (1) ◽  
pp. 168781402090385
Author(s):  
Ke Zhang ◽  
Zinan Wang ◽  
Xiaotian Bai ◽  
Huaitao Shi ◽  
Qi Wang

Ceramic bearings have a good dynamic output performance under an ultra-high, ultra-low temperature due to their small deformation property. Based on the Harris and Palmgren empirical equation, this article establishes the thermal transfer model of a ceramic motorized spindle. The thermal deformation of a ceramic angular contact ball bearing is calculated. A dynamic and thermal coupling model of the ceramic motorized spindle is built using the Hertz contact theory, which can determine the optimal preload force under different rotating speed conditions. The influence of different temperatures, preload, and rotation speeds on the bearing vibration characteristics was studied. The accuracy of the dynamic and thermal coupling model was verified by the motorized spindle experimental platform. The results show that the thermal deformation of the bearing is an important influencing factor for the output of the dynamic characteristics. Considering the thermal displacement of the bearing, the simulation accuracy of the ceramic motorized spindle-bearing system is in good agreement with the experimental results. By adjusting the bearing preload, the parameters of the rotating speed can effectively reduce the temperature rise and suppress the vibration. The spindle-bearing system model provides a theoretical basis for the dynamic development of a high-speed ceramic bearing.


2021 ◽  
pp. 107754632110233
Author(s):  
Wei Feng ◽  
Kun Zhang ◽  
Baoguo Liu ◽  
Weifang Sun ◽  
Sijie Cai

The air-gap eccentricity will produce unbalanced magnetic pull and cause vibrations and noises in a motor. In this study, the dynamic behavior of a synchronous motorized spindle with inclined eccentricity is investigated. A semi-analytical method is proposed to model the unbalanced magnetic pull and the electromagnetic torque of a rotor with inclined eccentricity, and the semi-analytical method is verified by the finite element method. The dynamic model of a spindle-bearing system is built by taking the centrifugal force and gyroscopic effects into account. Then, the vibration response of dynamic displacement eccentricity, inclined eccentricity including displacement eccentricity and angle eccentricity, rotating speed, and unbalanced mass eccentricity in both time domain and frequency domain are simulated and analyzed. The results show that the eccentricities can lead to fluctuations in amplitudes of the dynamic displacement response and the angle response. The frequency components of the dynamic responses are the combination of rotating frequency, VC frequency, and power frequency. It is indicated that the coupling interactions of bearing forces, unbalanced mass force, and unbalanced magnetic pull have an obvious effect on the spindle-bearing system.


2017 ◽  
Vol 2017 ◽  
pp. 1-18
Author(s):  
Cheng-Chi Wang

In recent years, spiral-grooved air bearing systems have attracted much attention and are especially useful in precision instruments and machines with spindles that rotate at high speed. Load support can be multidirectional and this type of bearing can also be very rigid. Studies show that some of the design problems encountered are dynamic and include critical speed, nonlinearity, gas film pressure, unbalanced rotors, and even poor design, all of which can result in the generation of chaotic aperiodic motion and instability under certain conditions. Such irregular motion on a large scale can cause severe damage to a machine or instrument. Therefore, understanding the conditions under which aperiodic behaviour and vibration arise is crucial for prevention. In this study, numerical analysis, including the Finite Difference and Differential Transformation Methods, is used to study these effects in detail in a front opposed-hemispherical spiral-grooved air bearing system. It was found that different rotor masses and bearing number could cause undesirable behaviour including periodic, subperiodic, quasi-periodic, and chaotic motion. The results obtained in this study can be used as a basis for future bearing system design and the prevention of instability.


Author(s):  
E. E. Swanson ◽  
H. Heshmat ◽  
J. S. Shin

The demand for high power density, reliable, low maintenance, oil-free turbomachinery imposes significant demands on the bearing system. The full benefits of high speed, permanent magnet driven machines, for example are realized at speeds exceeding the capabilities of rolling element bearings. The high speeds, and a desire for oil-free operation also make conventional liquid lubricated bearings an undesirable alternative. The modern, oil-free foil bearing provides an excellent alternative, providing low power loss, adequate damping for supercritical operation, tolerance of elevated temperatures and long life. In this paper, the application of modern foil bearings to a high speed, oil-free turbo-compressor is discussed. In this demanding application, foil bearings support a 24 pound, multi-component rotor operating at 70,000 RPM with a bending critical speed of approximately 43,000 RPM. Stable and reliable operation over the full speed range has been demonstrated. This application also required low bearing start-up torque for compatibility with the constant torque characteristic of the integral permanent magnet motor. This work discusses the rotor bearing system design, the development program approach, and the results of testing to date. Data for both a turbine driven configuration, as well as a high speed integral motor driven configuration are presented.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaopeng Wang ◽  
Yuzhu Guo ◽  
Tianning Chen

High speed motorized spindle has become a key functional unit of high speed machine tools and effectively promotes the development of machine tool technology. The development of higher speed and more power puts forward the stricter requirement for the performance of motorized spindle, especially the dynamic performance which affects the machining accuracy, reliability, and production efficiency. To overcome the problems of ineffective loading and dynamic performance measurement of motorized spindle, a noncontact electromagnetic loading device is developed. The cutting load can be simulated by using electromagnetic force. A new method of measuring force by force sensors is presented, and the steady and transient loading force could be measured exactly. After the high speed machine spindle is tested, the frequency response curves of the spindle relative to machine table are collected at 0~12000 rpm; then the relationships between stiffness and speeds as well as between damping ratio and speeds are obtained. The result shows that not only the static and dynamic stiffness but also the damping ratio declined with the increase of speed.


2020 ◽  
Vol 143 (7) ◽  
Author(s):  
Feng Gao ◽  
Weitao Jia ◽  
Yan Li ◽  
Dongya Zhang ◽  
Zhengliang Wang

Abstract For high-speed motorized spindle bearing, temperature rise is the primary factor that restricts the maximum speed of spindle and affects the stability of system. This paper addresses the lubrication and cooling of spindle bearing by exploiting the precise oil control and high cooling efficiency of oil–air lubrication. Enlightened by the bearing tribology and two-phase flow theory, a numerical model of oil–air two-phase flow heat transfer inside bearing cavity is created, with which the effects of operating condition and nozzle structure parameters on the temperature rise are studied. As the results show, with the elevation in speed, the heat generation increases rapidly, and despite the somewhat enhanced heat transfer effect, the temperature still tends to rise. Given the higher volume fraction of air than oil in the two-phase flow, the temperature rise of bearing is suppressed greatly as the air inlet velocity increases, revealing a remarkable cooling effect. When a single nozzle is used, the bearing temperature increases from the inlet to both sides, which peaks on the opposite side of the inlet. In case multiple evenly distributed nozzles are used, the high-temperature range narrows gradually, and the temperature distributions in the inner and outer rings tend to be consistent. With the increase in the nozzle aspect ratio, the airflow velocity drops evidently, which affects the heat dissipation, thereby resulting in an aggravated temperature rise. Finally, the simulation analysis is verified through experimentation, which provides a theoretical basis for selecting optimal parameters for the oil–air lubrication of high-speed bearing.


Author(s):  
Vincent Gagnol ◽  
Belhassen C. Bouzgarrou ◽  
Pascal Ray ◽  
Christian Barra

This paper presents a modelling approach of a high-speed spindle-bearing system based on a finite-element model analysis coupled to an experimental modal identification. Dynamic equations of the rotating entity are obtained using Lagrangian formulation associated with a numerical finite element method based on Timoshenko beam theory. Element kinematics is formulated in a co-rotational coordinate frame. A method for the experimental characterization of the dynamic behavior of a High Speed Machining (HSM) spindle is proposed. The goal of this method is to understand the influence of spindle structure elements on overall dynamic behavior. Each element is individually characterized and is integrated or not into the global model depending on the results. The choice of the finite element type for generating the numeric model is carried out on the basis of modal and harmonic experimental results. High-speed rotational effects including gyroscopic coupling and spin softening effects are investigated. The Campbell diagram indicates the potential critical speed for mass unbalance response and for synchronous excitation representative of the milling forces at tooth impact frequency. Excessive vibration levels at specific node location enable spindle component stress or failure during manufacturing processes to be predicted. The model is a useful tool for qualifying spindles in the manufacturing process and predicting their reliability. The proposed modeling approach can be transferred to other type of spindle.


2011 ◽  
Vol 480-481 ◽  
pp. 1511-1515
Author(s):  
Dong Man Yu ◽  
Chang Pei Shang ◽  
Di Wang ◽  
Zhi Hua Gao

Due to high rotation accuracy, high dynamic stiffness, high vibration damping and long life, high-speed spindles supported by hydrodynamic and hydrostatic hybrid bearings are widely applied in the field of high-speed precision machine tools. The basic structure and working principal was detailed introduced, and then demonstrated a series of models and specifications of motorized spindle manufactured by FISCHER company in Switzerland. The finite element model of high-speed motorized spindle was built up and carried out thermal analysis to study the heat generation and heat transfer. With the help of ANSYS finite element software, the temperature field distribution and the temperature rise condition for motorized spindle were analyzed. The result indicates that the front bearing has a higher temperature than that of back bearing. The maximum temperature of inner ring is bigger than that of outer ring.


Sign in / Sign up

Export Citation Format

Share Document