Self Lubricating Composite Coatings Containing TiC–MnS or WC-MnS Compounds Prepared by the Plasma Transferred Arc (PTA) Technique

2010 ◽  
Vol 132 (3) ◽  
Author(s):  
P. Skarvelis ◽  
G. D. Papadimitriou ◽  
M. Perraki

Composite coatings containing manganese sulphide as lubricating addition and enhanced with hard carbide particles (TiC, WC) were synthesized on a plain steel substrate using the plasma transferred arc technique. The coatings are well bonded to the substrate, have a thickness of about 1 mm, and are free of any visual defects. They consist mainly of a martensitic or ferritic matrix enhanced with titanium or tungsten carbides and a dispersion of MnS particles. The tribological properties of the composites are assessed using a pin-on-disk device. Both composites possess self lubricating properties, due to the formation of a thin layer of manganese sulphide on their wear tracks. The corresponding friction coefficients vary between 0.25 and 0.28, compared with 0.50–0.60 obtained from similar hard coatings without MnS addition. The wear rates are of the order of 10−5 mm3/m N and are two orders of magnitude lower than those obtained from the substrate material with MnS addition, but without the presence of hard enhancing particles. The wear regime is mild abrasion due to the combined action of both lubricating (MnS) and hard (TiC or WC) particles.

2011 ◽  
Vol 462-463 ◽  
pp. 593-598 ◽  
Author(s):  
Hong Xia Deng ◽  
Hui Ji Shi ◽  
Seiji Tsuruoka ◽  
Hui Chen Yu ◽  
Bin Zhong

The Plasma transferred arc welding (PTAW) is widely used for hardfacing components exposed to severe conditions. Without post welding heat treatments, large tensile residual stresses remain in the hardfacing coating, which is detrimental. In this paper, a set of post welding heat treatments was evaluated for the heat-resistant steel substrate – Co-based alloy hardfacing coating system. Microstructural and mechanical properties, including the chemical phases of coating surface, the microstructure of coating surface, the Vickers hardness and the residual welding stress, were investigated before and after the heat treatments. Results revealed that during the heat treatments, some elements reprecipitated and the secondary carbide Cr23C6 was formed. After the treatments, a more regular structure and a higher Vickers hardness were obtained. Moreover, the tensile residual stresses in the coating decreased significantly. Therefore, it can be inferred that the post welding heat treatments employed in this paper were proper for this material system.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Andrea Angelastro ◽  
Sabina L. Campanelli ◽  
Giuseppe Casalino ◽  
Antonio D. Ludovico

As a surface coating technique, laser cladding (LC) has been developed for improving wear, corrosion, and fatigue properties of mechanical components. The main advantage of this process is the capability of introducing hard particles such as SiC, TiC, and WC as reinforcements in the metallic matrix such as Ni-based alloy, Co-based alloy, and Fe-based alloy to form ceramic-metal composite coatings, which have very high hardness and good wear resistance. In this paper, Ni-based alloy (Colmonoy 227-F) and Tungsten Carbides/Cobalt/Chromium (WC/Co/Cr) composite coatings were fabricated by the multilayer laser cladding technique (MLC). An optimization procedure was implemented to obtain the combination of process parameters that minimizes the porosity and produces good adhesion to a stainless steel substrate. The optimization procedure was worked out with a mathematical model that was supported by an experimental analysis, which studied the shape of the clad track generated by melting coaxially fed powders with a laser. Microstructural and microhardness analysis completed the set of test performed on the coatings.


2015 ◽  
Vol 25 (1-2) ◽  
pp. 375-383
Author(s):  
A. Werry ◽  
C. Chazelas ◽  
A. Denoirjean ◽  
S. Valette ◽  
A. Vardelle ◽  
...  

2011 ◽  
Vol 675-677 ◽  
pp. 783-787 ◽  
Author(s):  
Li Mei Wang ◽  
Jun Bo Liu ◽  
Chi Yuan

In situ synthesized Fe-Cr-C-TiC high-chromium Fe-based ceramic composite coating was fabricated on substrate of Q235 steel by plasma transferred arc (PTA) weld-surfacing process using the mixture of ferrotitanium, ferrochromium, ferroboron and ferrosilicium powders. The microstructure and wear properties of the composite coating were investigated by XRD, SEM, EDS, microhardness tester and wear tester. Results show that the coating consists of TiC, (Cr,Fe)7C3 and austenite. The coating is metallurgically bonded to the Q235 steel substrate. TiC particles formed by PTA weld-surfacing process present cubic, dendrite and flower-like shape. The wear resistance of the composite coating is approximately 11 times higher than that of the base body Q235. As the load increases, the wear mass loses slowly, which demonstrates the composite coating has excellent load character.


2019 ◽  
Vol 14 (7) ◽  
pp. 717-720 ◽  
Author(s):  
Qiuyue Jiang ◽  
Ye Tian ◽  
Fengyuan Shu ◽  
Hongyun Zhao ◽  
Yiming Sun ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6066
Author(s):  
Artur Czupryński ◽  
Marcin Żuk

This article is the last of a series of publications included in the MDPI special edition entitled “Innovative Technologies and Materials for the Production of Mechanical, Thermal and Corrosion Wear-Resistant Surface Layers and Coatings”. Powder plasma-transferred arc welding (PPTAW) was used to surface metal matrix composite (MMC) layers using a mixture of cobalt (Co3) and nickel (Ni3) alloy powders. These powders contained different proportions and types of hard reinforcing phases in the form of ceramic carbides (TiC and WC-W2C), titanium diboride (TiB2), and of tungsten-coated synthetic polycrystalline diamond (PD-W). The resistance of the composite layers to cracking under the influence of dynamic loading was determined using Charpy hammer impact tests. The results showed that the various interactions between the ceramic particles and the metal matrix significantly affected the formation process and porosity of the composite surfacing welds on the AISI 4715 low-alloy structural steel substrate. They also affected the distribution and proportion of reinforcing-phase particles in the matrix. The size, shape, and type of the ceramic reinforcement particles and the surfacing weld density significantly impacted the brittleness of the padded MMC layer. The fracture toughness increased upon decreasing the particle size of the hard reinforcing phase in the nickel alloy matrix and upon increasing the composite density. The calculated mean critical stress intensity factor KIc of the steel samples with deposited layers of cobalt alloy reinforced with TiC and PD-W particles was 4.3 MPa⋅m12 higher than that of the nickel alloy reinforced with TiC and WC-W2C particles.


Sign in / Sign up

Export Citation Format

Share Document