Successive Softening and Cyclic Damage in Viscoplastic Material

2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Leila J. Ladani

A successive initiation finite element modeling approach is presented in which an empirical continuum damage model, energy partitioning damage evolution model, developed by the author is used to update state of damage and constitutive properties of the material under thermomechanical cyclic loading and accumulate damage in the elements. Plastic and viscoplastic damages are evaluated based on the plastic and viscoplastic work densities obtained through finite element. Constitutive properties are updated elementwise at each step of the process based on the state of damage in each element. The elements that have reached the damage threshold are removed from the structure to initiate and propagate fatigue crack. This successive initiation approach is used to model crack initiation and propagation in Pb-free solder material under thermomechanical loading. A case study is presented, damage propagation path and pattern are compared with typical experimental results, and the accuracy of the model was verified.

2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Sha Sha ◽  
Guoxin Zhang

High-pressure hydraulic fracture (HF) is an important part of the safety assessment of high concrete dams. A stress-seepage-damage coupling model based on the finite element method is presented and first applied in HF in concrete dams. The coupling model has the following characteristics: (1) the strain softening behavior of fracture process zone in concrete is considered; (2) the mesh-dependent hardening technique is adopted so that the fracture energy dissipation is not affected by the finite element mesh size; (3) four coupling processes during hydraulic fracture are considered. By the damage model, the crack propagation processes of a 1 : 40 scaled model dam and Koyna dam are simulated. The results are in agreement with experimental and other numerical results, indicating that the damage model can effectively predict the carrying capacity and the crack trajectory of concrete gravity dams. Subsequently, the crack propagation processes of Koyna dam using three notches of different initial lengths are simulated by the damage model and the coupling model. And the influence of HF on the crack propagation path and carrying capacity is studied. The results reveal that HF has a significant influence on the global response of the dam.


Author(s):  
Leila J. Ladani ◽  
A. Dasgupta

This study presents an approach to predict the degree of material degradation and the resulting changes in constitutive properties during cyclic loading in viscoplastic materials in micro-scale applications. The objective in the modeling approach is to address the initiation and growth of distributed micro-damage, in the form of micro-cracks and micro-voids, as a result of cyclic, plastic and creep deformations of material. This study extends an existing micromechanics-based approach, developed for unified viscoplastic models [Wen, et al, 2001], which uses dislocation mechanics to predict damage due to distributed micro-scale fatigue crack initiation [Mura and Nakasone, 1990]. In the present study, the approach is extended to a partitioned viscoplastic framework, because the micro-scale mechanisms of deformation and damage are different for plastic and creep deformation. In this approach, the model constants for estimating cyclic damage evolution are allowed to be different for creep and plastic deformations. A partitioned viscoplastic constitutive model is coupled with an energy partitioning (E-P) damage model [Oyan and Dasgupta, 1992] to assess fatigue damage evolution due to cyclic elastic, plastic and creep deformations. Wen’s damage evolution model is extended to include damage evolution due to both plastic and creep deformations. The resulting progressive degradation of elastic, plastic and creep constitutive properties are continuously assessed and updated. The approach is implemented on a viscoplastic Pb-free solder. Dominant deformation modes in this material are dislocation slip for plasticity and diffusion-assisted dislocation climb/glide for creep. The material’s behavior shows a good correlation with the proposed damage evolution model. Damage evolution constants for plastic and creep deformation were obtained for this Pb-free solder from load drop data collected from the mechanical cycling experiments at different temperatures. The amount of cyclic damage is evaluated and compared with experiment.


Author(s):  
Lucija Pajic ◽  
Alexander A. Lukyanov

Submarine and onshore pipelines transport enormous quantities of oil and gas vital to the economies of virtually all nations. Any failure to ensure safe and continuous operation of these pipelines can have serious economic implications, damage the environment and cause fatalities. A prerequisite to safe pipeline operation is to ensure their structural integrity to a high level of reliability throughout their operational lives. This integrity may be threatened by volumetric and shear ductile micro- and macro-fracture processes under long time loading or continuous operation. In this paper a mathematically consistent damage model for predicting the damage in pipeline structures under tensile and shear loading is considered. A detailed study of widely used damage models (e.g., Lemaitre’s and Gurson’s models) has been published in the literature. It has been shown that Gurson’s damage model is not able to adequately predict fracture propagation path under shear loading, whereas Lemaitre’s damage model (Lemaitre, 1985) shows good results in this case (e.g., Hambli 2001, Mkaddem et al. 2004). The opposite effect can be observed for some materials by using Gurson’s damage model in the case of tensile loading (e.g., Tvergaard and Needleman 1984; Zhang et al. 2000; Chen and Lambert 2003; Mashayekhi et al. 2007) and wiping die bending process (Mkaddem et al. 2004). Therefore, the mathematically consistent damage model which takes into account the advantages of both Lemaitre’s and Gurson’s models has been developed. The model is based on the assumption that the damage state of materials can be described by a damage tensor ωij. This allows for definition of two scalars that are ω = ωkk/3 (the volume damage) (Lukyanov, 2004) and α = ωij′ωij′ (a norm of the damage tensor deviator ωij′ = ωij −ωδij) (Lukyanov, 2004). The ω parameter describes the accumulation of micro-pore type damage (which may disappear under compression) and the parameter α describes the shear damage. The proposed damage model has been implemented into the finite element code ABAQUS by specifying the user material routine (UMAT). Based on experimental research which has been published by Lemaitre (1985), the proposed isotropic elastoplastic damage model is validated. The results for X-70 pipeline steel are also presented, discussed and future studies are outlined.


2003 ◽  
Vol 125 (4) ◽  
pp. 412-417 ◽  
Author(s):  
Priya Thamburaj ◽  
Michael H. Santare ◽  
George A. Gazonas

A damage model developed by Johnson and Holmquist is implemented into a dynamic finite element code. This is then used to study the effect of grading of the phenomenological damage parameters on the propagation of damage through the material. The numerical results for two one-dimensional example problems with different boundary conditions are presented, wherein the effect of a gradient in the intact strength of the material on damage propagation is studied. The results show that introducing different strength gradients can alter the location of the site of maximum damage. This may have important implications in the design of impact resistant materials and structures.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 397
Author(s):  
Yahya Ali Fageehi

This paper presents computational modeling of a crack growth path under mixed-mode loadings in linear elastic materials and investigates the influence of a hole on both fatigue crack propagation and fatigue life when subjected to constant amplitude loading conditions. Though the crack propagation is inevitable, the simulation specified the crack propagation path such that the critical structure domain was not exceeded. ANSYS Mechanical APDL 19.2 was introduced with the aid of a new feature in ANSYS: Smart Crack growth technology. It predicts the propagation direction and subsequent fatigue life for structural components using the extended finite element method (XFEM). The Paris law model was used to evaluate the mixed-mode fatigue life for both a modified four-point bending beam and a cracked plate with three holes under the linear elastic fracture mechanics (LEFM) assumption. Precise estimates of the stress intensity factors (SIFs), the trajectory of crack growth, and the fatigue life by an incremental crack propagation analysis were recorded. The findings of this analysis are confirmed in published works in terms of crack propagation trajectories under mixed-mode loading conditions.


2021 ◽  
Vol 13 (2) ◽  
pp. 168781402199497
Author(s):  
Guanghui Xu ◽  
Shengkai Su ◽  
Anbin Wang ◽  
Ruolin Hu

The increase of axle load and train speed would cause intense wheelrail interactions, and lead to potential vibration related problems in train operation. For the low-frequency vibration reduction of a track system, a multi-layer track structure was proposed and analyzed theoretically and experimentally. Firstly, the analytical solution was derived theoretically, and followed by a parametric analysis to verify the vibration reduction performance. Then, a finite element simulation is carried out to highlight the influence of the tuned slab damper. Finally, the vibration and noise tests are performed to verify the results of the analytical solution and finite element simulation. As the finite element simulation indicates, after installation of the tuned slab damper, the peak reaction force of the foundation can be reduced by 60%, and the peak value of the vertical vibration acceleration would decrease by 50%. The vibration test results show that the insertion losses for the total vibration levels are 13.3 dB in the vertical direction and 21.7 dB in the transverse direction. The noise test results show that the data of each measurement point is smoother and smaller, and the noise in the generating position and propagation path can be reduced by 1.9 dB–5.5 dB.


2005 ◽  
Vol 297-300 ◽  
pp. 1019-1024
Author(s):  
Mitsugu Todo ◽  
Yoshihiro Fukuya ◽  
Seiya Hagihara ◽  
Kazuo Arakawa

Microscopic studies on the toughening mechanism of rubber-toughened PMMA (RTPMMA) were carried out using a polarizing optical microscope (POM) and a transmission electron microscope (TEM). POM result showed that in a typical RT-PMMA, a damage zone was developed in the vicinity of crack-tip, and therefore, it was considered that energy dissipation due to the damage zone development was the primary toughening mechanism. TEM result exhibited that the damage zone was a crowd of micro-crazes generated around rubber particles in the vicinity of notch-tip. Finite element analysis was then performed to simulate such damage formations in crack-tip region. Macro-scale and micro-scale models were developed to simulate damage zone formation and micro-crazing, respectively, with use of a damage model. It was shown that the damage model introduced was successfully applied to predict such kind of macro-damage and micro-craze formations.


Author(s):  
N Carrere ◽  
N Tual ◽  
T Bonnemains ◽  
E Lolive ◽  
P Davies

In this study, a damage model that accounts for the effect of seawater ageing is proposed. The model is based on a failure criterion that takes into account the effect of the ply thickness, while the kinetics of the damage development are based on a Finite Fracture Mechanics approach. The stiffness degradation is identified by a multiscale approach. The parameters of the model are physically based which facilitates the identification and the coupling with the ageing. These and their evolution as a function of the time of immersion in seawater have been identified for a carbon/epoxy composite. The changes in crack density as a function of the applied load for three ageing times are quite well predicted by the model. The model explains why the damage threshold is strongly influenced by the ageing while the kinetics of the crack propagation remain quasi-constant.


Sign in / Sign up

Export Citation Format

Share Document