Bacterial Nanocellulose for Medicine Regenerative

Author(s):  
Gabriel Molina de Olyveira ◽  
Ligia Maria Manzine Costa ◽  
Pierre Basmaji ◽  
Lauro Xavier Filho

Bacterial cellulose (BC) has established to be a remarkably versatile biomaterial and can be used in a wide variety of applied scientific endeavours, especially for medical devices. Nanocellulose, such as that produced by the bacteria Gluconacetobacter xylinus (bacterial cellulose, BC), is an emerging biomaterial with great potential in flexible radar absorbing materials, in scaffold for tissue regeneration, water treatment, and medical applications. Bacterial cellulose nanofibril bundles have excellent intrinsic properties due to their high crystallinity, which is higher than that generally recorded for macroscale natural fibers and is of the same order as the elastic modulus of glass fibers. Compared with cellulose from plants, BC also possesses higher water holding capacity, higher degree of polymerization (up to 8000), and a finer weblike network. In addition, BC is produced as a highly hydrated and relatively pure cellulose membrane, and therefore no chemical treatments are needed to remove lignin and hemicelluloses, as is the case for plant cellulose. Because of these characteristics, biomedical devices recently have gained a significant amount of attention because of an increased interest in tissue-engineered products for both wound care and the regeneration of damaged or diseased organs. Hydrophilic bacterial cellulose fibers of an average diameter of 50 nm are produced by the bacterium Acetobacter xylinum, using a fermentation process. The architecture of BC materials can be engineered over length scales ranging from nano to macro by controlling the biofabrication process. Moreover, the nanostructure and morphological similarities with collagen make BC attractive for cell immobilization and cell support. This review describes the fundamentals, purification, and morphological investigation of bacterial cellulose. Besides, microbial cellulose modification and how to increase the compatibility between cellulosic surfaces and a variety of plastic materials have been reported. Furthermore, provides deep knowledge of current and future applications of bacterial cellulose and their nanocomposites especially in the medical field.

Author(s):  
Siriporn Taokaew ◽  
Muenduen Phisalaphong ◽  
Bi-min Zhang Newby

Bacterial cellulose, synthesized by bacteria, is one of the most highly pure cellulose sources. It has gained a great attention due to its unique properties. With molecular similarity to cellulose derived from plants, bacterial cellulose can be modified based on diverse techniques established for the plant-derived cellulose. Modification of cellulose has become one of the major areas of cellulose research to provide cellulose-based materials with novel properties. The progress in cellulose science has also opened up more potentials for bacterial cellulose. This chapter describes an overview of biosyntheses, modifications, and applications of bacterial cellulose.


2021 ◽  
Vol 50 (2) ◽  
pp. 493-505
Author(s):  
Izabela Betlej ◽  
Sarani Zakaria ◽  
Krzysztof J. Krajewski ◽  
Piotr Boruszewski

This review paper is related to the utilization on bacterial cellulose in many applications. The polymer produced from bacterial cellulose possessed a very good physical and mechanical properties, such as high tensile strength, elasticity, absorbency. The polymer from bacterial cellulose has a significantly higher degree of polymerization and crystallinity compared to those derived from plant. The collection of selected literature review shown that bacterial cellulose produced are in the form pure cellulose and can be used in many of applications. These include application in various industries and sectors of the economy, from medicine to paper or electronic industry.


2020 ◽  
Vol 16 ◽  
Author(s):  
Munair Badshah ◽  
Hanif Ullah ◽  
Fazli Wahid ◽  
Taous Khan

Background: Bacterial cellulose (BC) is purest form of cellulose as it is free from pactin, lignin, hemicellulose and other active constituents associated with cellulose derived from plant sources. High biocompatibility and easy molding into desired shape make BC an ideal candidate for applications in biomedical field such as tissue engineering, wound healing and bone regeneration. In addition to this, BC has been widely studied for applications in the delivery of proteins and drugs in various forms via different routes. However, BC lacks therapeutic properties and resistance to free movement of small molecules i.e., gases and solvents. Therefore, modification of BC is required to meet the research ad market demand. Methods: We have searched the updated data relevant to as-synthesized and modified BC, properties and applications in various fields using Web of science, Science direct, Google and PubMed. Results: As-synthesized BC possesses properties such as high crystallinity, well organized fibrous network, higher degree of polymerization, and ability of being produced in swollen form. The large surface area with abundance of free accessible hydroxyl groups makes BC an ideal candidate for carrying out surface functionalization to enhance its features. The various reported surface modification techniques including, but not limited to, are amination, methylation and acetylation. Conclusion: In this review, we have highlighted various approaches made for BC surface modification. We have also reported enhancement in the properties of modified BC and potential applications in different fields ranging from biomedical science to drug delivery and paper-making to various electronic devices.


2021 ◽  
Vol 22 (12) ◽  
pp. 6269
Author(s):  
Anna Nowak ◽  
Paula Ossowicz-Rupniewska ◽  
Rafał Rakoczy ◽  
Maciej Konopacki ◽  
Magdalena Perużyńska ◽  
...  

Bacterial cellulose membranes (BCs) are becoming useful as a drug delivery system to the skin. However, there are very few reports on their application of plant substances to the skin. Komagataeibacter xylinus was used for the production of bacterial cellulose (BC). The BC containing 5% and 10% ethanolic extract of Epilobium angustifolium (FEE) (BC-5%FEE and BC-10%FEE, respectively) were prepared. Their mechanical, structural, and antioxidant properties, as well as phenolic acid content, were evaluated. The bioavailability of BC-FESs using mouse L929 fibroblasts as model cells was tested. Moreover, in vitro penetration through the pigskin of the selected phenolic acids contained in FEE and their accumulation in the skin after topical application of BC-FEEs was examined. The BC-FEEs were characterized by antioxidant activity. The BC-5% FEE showed relatively low toxicity to healthy mouse fibroblasts. Gallic acid (GA), chlorogenic acid (ChA), 3,4-dihydroxybenzoic acid (3,4-DHB), 4-hydroxybenzoic acid (4-HB), 3-hydroxybenzoic acid (3-HB), and caffeic acid (CA) found in FEE were also identified in the membranes. After topical application of the membranes to the pigskin penetration of some phenolic acid and other antioxidants through the skin as well as their accumulation in the skin was observed. The bacterial cellulose membrane loaded by plant extract may be an interesting solution for topical antioxidant delivery to the skin.


2005 ◽  
Vol 385 (2) ◽  
pp. 527-535 ◽  
Author(s):  
Kalle KIPPER ◽  
Priit VÄLJAMÄE ◽  
Gunnar JOHANSSON

Reaction conditions for the reducing-end-specific derivatization of cellulose substrates with the fluorogenic compound, anthranilic acid, have been established. Hydrolysis of fluorescence-labelled celluloses by cellobiohydrolase Cel7A from Trichoderma reesei was consistent with the active-site titration kinetics (burst kinetics), which allowed the quantification of the processivity of the enzyme. The processivity values of 88±10, 42±10 and 34±2.0 cellobiose units were found for Cel7A acting on labelled bacterial cellulose, bacterial microcrystalline cellulose and endoglucanase-pretreated bacterial cellulose respectively. The anthranilic acid derivatization also provides an alternative means for estimating the average degree of polymerization of cellulose and, furthermore, allows the quantitative monitoring of the production of reducing end groups on solid cellulose on hydrolysis by cellulases. Hydrolysis of bacterial cellulose by cellulases from T. reesei revealed that, by contrast with endoglucanase Cel5A, neither cellobiohydrolases Cel7A nor Cel6A produced detectable amounts of new reducing end groups on residual cellulose.


1998 ◽  
Vol 62 (7) ◽  
pp. 1451-1454 ◽  
Author(s):  
Mari TABUCHI ◽  
Kunihiko WATANABE ◽  
Yasushi MORINAGA ◽  
Fumihiro YOSHINAGA

2021 ◽  
Author(s):  
KARAN SHAH ◽  
GENE YANG ◽  
MOHAMMAD EL LOUBANI ◽  
SUBRAMANI SOCKALINGAM ◽  
DONGKYU LEE

High performance carbon and glass fibers are widely used as reinforcements in composite material systems for aerospace, automotive, and defense applications. Modifications to fiber surface treatment (sizing) is one of the ways to improve the strength of fibers and hence the overall longitudinal tensile strength of the composite. Single fiber tensile tests at the millimeter scale are typically used to characterize the effect of sizing on fiber strength. However, the characteristic length-scale governing the composite failure due to a cluster of fiber breaks is in the micro-scales. To access such micro-scale gage-lengths, we aim to employ indenters of varying radii to transversely load fibers and use scanning electron microscope (SEM) with digital image correlation (DIC) to measure strains at these lengthscales. The use of DIC technique requires creation of a uniform, random, and high contrast speckle pattern on the fiber surface such as that shown in Figure 1. In this work, we investigate the formation of sub-microscale speckle pattern on carbon fiber surface via sputter deposition and pulsed laser deposition techniques (PLD) using Gold-Palladium (Au-Pd) and Niobium-doped SrTiO3 (Nb:STO) targets respectively. Different processing conditions are investigated for both sputter deposition: sputtering current and coating duration, and PLD: number of pulses respectively to create sub-micron scale patterns viable for micro-DIC on both sized and unsized carbon fibers. By varying the deposition conditions and SEM-imaging the deposited patterns on fibers, successful pattern formation at sub-micron scale is demonstrated for both as-received sized and unsized IM7 carbon fibers of average diameter 5.2 μm via sputter deposition and PLD respectively.


2020 ◽  
Vol 33 (8) ◽  
pp. 321-332 ◽  
Author(s):  
Bambang Kuswandi ◽  
Ni P.N. Asih ◽  
Dwi K. Pratoko ◽  
Nia Kristiningrum ◽  
Mehran Moradi

Sign in / Sign up

Export Citation Format

Share Document