A Study of Flow of Plastics Through Pipes

1946 ◽  
Vol 13 (2) ◽  
pp. A101-A105
Author(s):  
R. C. Binder ◽  
J. E. Busher

Abstract The pipe friction coefficient for true fluids is usually expressed as a function of Reynolds number. This method of organizing data has been extended to tests on the flow of different suspensions which behaved as ideal plastics in the laminar-flow range and as true fluids in the turbulent-flow range. In the laminar-flow range, Reynolds number below about 2100, the denominator in Reynolds number is taken as the apparent viscosity. The apparent viscosity can be determined from the yield value and the coefficient of rigidity. In the turbulent-flow range, the denominator in Reynolds number is an equivalent or turbulent viscosity equal to the dynamic viscosity of a true fluid having the same friction coefficient, velocity, diameter, and density as that of the plastic. The various experimental data on plastics correlate well with this extension of the method for true fluids.

Author(s):  
Gian Piero Celata

The objective of the present paper is to provide a general overview of the research carried out so far in single-phase heat transfer and flow in capillary (micro) pipes. Laminar flow and laminar-to-turbulent flow transition are analyzed in detail in order to clarify the discrepancies among the results obtained by different researchers. Experiments performed in the ENEA laboratory indicate that in laminar flow regime the friction factor is in good agreement with the Hagen-Poiseuille theory for Reynolds number below 600–800. For higher values of Reynolds number, experimental data depart from the Hagen-Poiseuille law to the side of higher f values. The transition from laminar-to-turbulent flow occurs for Reynolds number in the range 1800–2500. Heat transfer experiments show that heat transfer correlations in laminar and turbulent regimes, developed for conventional (macro) tubes, are not properly adequate for heat transfer rate prediction in microtubes.


Author(s):  
Georgii Glebovich Yankov ◽  
Vladimir Kurganov ◽  
Yury Zeigarnik ◽  
Irina Maslakova

Abstract The review of numerical studies on supercritical pressure (SCP) coolants heat transfer and hydraulic resistance in turbulent flow in vertical round tubes based on Reynolds-averaged Navier-Stokes (RANS) equations and different models for turbulent viscosity is presented. The paper is the first part of the general analysis, the works based on using algebraic turbulence models of different complexity are considered in it. The main attention is paid to Petukhov-Medvetskaya and Popov et al. models. They were developed especially for simulating heat transfer in tubes of the coolants with significantly variable properties (droplet liquids, gases, SCP fluids) under heating and cooling conditions. These predictions were verified on the entire reliable experimental data base. It is shown that in the case of turbulent flow in vertical round tubes these models make it possible predicting heat transfer and hydraulic resistance characteristics of SCP flows that agree well with the existed reliable experimental data on normal and certain modes of deteriorated heat transfer, if significant influence of buoyancy and radical flow restructuring are absent. For the more complicated cases than a flow in round vertical tubes, as well as for the case of rather strong buoyancy effect, more sophisticated prediction techniques must be applied. The state-of-the-art of these methods and the problems of their application are considered in the Part II of the analysis.


2011 ◽  
Vol 197-198 ◽  
pp. 1776-1780 ◽  
Author(s):  
Hong Guo ◽  
Bo Qian Xia ◽  
Shao Qi Cen

This paper presents a theoretical study concerning the static and dynamic characteristics of high speed journal floating ring hybrid bearing compensated by interior restrictor under laminar flow and turbulent flow respectively. The turbulent flow fluid film control equations and the pressure boundary conditions of this floating ring bearing together with the restrictor flow equation are solved by using the Finite Element Method. The variation regularity of static and dynamic characteristics such as load capacity, friction power loss, stiffness, damping etc. is analyzed. By comparing the laminar flow results and turbulent flow results, it is found that the characteristics coefficients are adjacent under small Reynolds number (laminar flow is dominant). But the characteristics coefficients are discrepant under big Reynolds number (turbulent flow is dominant). So turbulence lubrication theory is more accurate to high speed floating ring bearing.


1968 ◽  
Vol 90 (2) ◽  
pp. 342-350 ◽  
Author(s):  
H. J. Sneck

The “short bearing” equation of lubrication theory, modified to include the inertial effects, is used to study the influence of geometric deviations from the ideal. The turbulent nature of the flow is described by an isotropic apparent viscosity and a power-law velocity distribution. It is found that geometric deviations from the ideal are less influential than in laminar flow.


Author(s):  
Eric B. Ratts ◽  
Atul G. Raut

This paper addresses the thermodynamic optimum of single-phase convective heat transfer in fully developed flow for uniform and constant heat flux. The optimal Reynolds number is obtained using the entropy generation minimization (EGM) method. Entropy generation due to viscous dissipation and heat transfer dissipation in the flow passage are summed, and then minimized with respect to Reynolds number based on hydraulic diameter. For fixed mass flow rate and fixed total heat transfer rate, and the assumption of uniform heat flux, an optimal Reynolds number for laminar as well as turbulent flow is obtained. In addition, the method quantifies the flow irreversibilities. It was shown that the ratio of heat transfer dissipation to viscous dissipation at minimum entropy generation was 5:1 for laminar flow and 29:9 for turbulent flow. For laminar flow, the study compared non-circular cross-sections to the circular cross-section. The optimal Reynolds number was determined for the following cross-sections: square, equilateral triangle, and rectangle with aspect ratios of two and eight. It was shown that the rectangle with the higher aspect ratio had the smallest optimal Reynolds number, the smallest entropy generation number, and the smallest flow length.


2016 ◽  
Vol 809 ◽  
pp. 31-71 ◽  
Author(s):  
S. He ◽  
K. He ◽  
M. Seddighi

It is well established that when a turbulent flow is subjected to a non-uniform body force, the turbulence may be significantly suppressed in comparison with that of the flow of the same flow rate and hence the flow is said to be laminarised. This is the situation in buoyancy-aided mixed convection when severe heat transfer deterioration may occur. Here we report results of direct numerical simulations of flow with a linear or a step-change profile of body force. In contrast to the conventional view, we show that applying a body force to a turbulent flow while keeping the pressure force unchanged causes little changes to the key characteristics of the turbulence. In particular, the mixing characteristics of the turbulence represented by the turbulent viscosity remain largely unaffected. The so-called flow laminarisation due to a body force is in effect a reduction in the apparent Reynolds number of the flow, based on an apparent friction velocity associated with only the pressure force of the flow (i.e. excluding the contribution of the body force). The new understanding allows the level of the flow ‘laminarisation’ and when the full laminarisation occurs to be readily predicted. In terms of the near-wall turbulence structure, the numbers of ejections and sweeps are little influenced by the imposition of the body force, whereas the strength of each event may be enhanced if the coverage of the body force extends significantly away from the wall. The streamwise turbulent stress is usually increased in accordance with the observation of more and stronger elongated streaks, but the wall-normal and the circumferential turbulent stresses are largely unchanged.


2021 ◽  
Vol 2021 (2) ◽  
pp. 32-38
Author(s):  
Vadym Orel ◽  
◽  
Bohdan Pitsyshyn ◽  
Tetiana Konyk ◽  
◽  
...  

The sizes of the vortex region before the axisymmetric sudden contraction of the circular pipe at the Newtonian flow have been investigated. Area ratios 0.250 and 0.500 were considered. The sizes of the vortex region have the extreme dependence with a maximum at the transition of the laminar flow into a turbulent flow one. When the Reynolds number at the laminar flow increase, these sizes also increase, and they decrease at the turbulent flow. In both cases, the sizes of the vortex region are proportional to the Reynolds number. A transition region between laminar flow and turbulent flow lies in the range of the Reynolds number from 3000 to 5300 and 750…1300, determined by the diameter of a bigger pipe of sudden expansion and a step height correspondingly


Vestnik MGSU ◽  
2015 ◽  
pp. 86-92
Author(s):  
Manana Levanovna Medzveliya ◽  
Valeriy Stepanovich Borovkov

The article examines the dependence of the hydraulic friction coefficient of open laminar uniform streams on the relative width of channels with smooth bottom. The article presents the functional dependence that describes the hydraulic resistance in open channels with smooth bottoms.The experiments were carried out in a rectangular tray (6000×100×200). Aqueous solutions of glycerol were used as working fluids. The superficial tension and liquid density for the used liquids changed a little. The article declares that the coefficient of hydraulic friction λ in the zone of the laminar flow depends on the relative width of the channels with smooth bottom. In the article it is also shown that the Charny formula satisfactorily agrees with the theoretical formula and with the experimental data.


2020 ◽  
pp. 108-122
Author(s):  
Akeel M. Ali Morad ◽  
Rafi M. Qasim ◽  
Amjed Ahmed Ali

This study presents a model to investigate the behavior of the single-phase turbulent flow at low to moderate Reynolds number of water through the vertical pipe through (2D) contour analysis. The model constructed based on governing equations of an incompressible Reynolds Average Navier-Stokes (RANS) model with (k-ε) method to observe the parametric determinations such as velocity profile, static pressure profile, turbulent kinetic energy consumption, and turbulence shear wall flows. The water is used with three velocities values obtained of (0.087, 0.105, and 0.123 m/s) to represent turbulent flow under low to moderate Reynolds number of the pipe geometry of (1 m) length with a (50.8 mm) inner diameter. The water motion behavior inside the pipe shows by using [COMSOL Multiphysics 5.4 and FLUENT 16.1] Software. It is concluded that the single-phase laminar flow of a low velocity, but obtained a higher shearing force; while the turbulent flow of higher fluid velocity but obtained the rate of dissipation of shearing force is lower than that for laminar flow. The entrance mixing length is affected directly with pattern of fluid flow. At any increasing in fluid velocity, the entrance mixing length is increase too, due to of fluid kinetic viscosity changes. The results presented the trends of parametric determinations variation through the (2D) counters analysis of the numerical model. When fluid velocity increased, the shearing force affected directly on the layer near-wall pipe. This leads to static pressure decreases with an increase in fluid velocities. While the momentum changed could be played interaction rules between the fluid layers near the wall pipe with inner pipe wall. Finally, the agreement between present results with the previous study of [1] is satisfied with the trend


1963 ◽  
Vol 17 (1) ◽  
pp. 105-112 ◽  
Author(s):  
C. L. Tien ◽  
D. T. Campbell

Heat transfer by convection from isothermal rotating cones is investigated experimentally by measuring the sublimation rate from naphthalene-coated cones and using the analogy between heat and mass transfer. Measurements are made for a range of conditions from entirely laminar flow to conditions when the outer 70% of the surface area is covered by turbulent flow. Mass-transfer measurements for laminar flow over cones of vertex angles 180°, 150°, 120° and 90° are in good agreement with the theoretical prediction. For turbulent flow, experimental results for cones of the above vertex angles also agree very well with the semi-empirical analogy calculations for the disk case. A different heat- and mass-transfer relationship with the rotational Reynolds number is observed in the measurements on the 60° cone, and is believed to be due to a change of flow characteristics. The instability and the transition of flows over different cone models are also discussed.


Sign in / Sign up

Export Citation Format

Share Document