The Wave Method for Solving Flexural Vibration Problems

1954 ◽  
Vol 21 (1) ◽  
pp. 75-80
Author(s):  
R. P. N. Jones

Abstract In this paper the use of normal mode and wave methods in problems of dynamic loading on beams is discussed, and the methods are applied to simple problems of uniform beams under a suddenly applied load. For these problems, mathematically exact results have been obtained, enabling a comparison to be made between the two types of solution. Experimental results for these problems also have been obtained, using an apparatus which releases the beam from a deflected position, and displays a record of the resultant response on an oscillograph screen, using a time base synchronized with the release of the beam. Good agreement is obtained between the experimental and theoretical results, and it is shown that the wave solution is useful for determining the initial response of the beam, while the subsequent response can be better obtained from the normal-mode solution.

2019 ◽  
Vol 10 (1) ◽  
pp. 215
Author(s):  
Zhi-Xin Yang ◽  
Xiao-Ting He ◽  
Dan-Dan Peng ◽  
Jun-Yi Sun

As an intelligent material, piezoelectric materials have been widely used in many intelligent fields, especially in the analysis and design of sensors and actuators; however, the vibration problems of the corresponding structures made of the piezoelectric materials are often difficult to solve analytically, because of their force–electric coupling characteristics. In this paper, the biparametric perturbation method was used to solve the free damping vibration problem of piezoelectric cantilever beams, and the perturbation solution of the problem solved here was given. A numerical example was given to discuss the influence of the piezoelectric properties on the vibration of piezoelectric cantilever beams. In addition, related vibration experiments of the piezoelectric cantilever beams were carried out, and the experimental results were in good agreement with the theoretical results. The results indicated that the biparametric perturbation solution obtained in this study is effective, and it may serve as a theoretical reference for the design of sensors and actuators made of piezoelectric materials.


2020 ◽  
pp. 131-138

The nonlinear optical properties of pepper oil are studied by diffraction ring patterns and Z-scan techniques with continuous wave beam from solid state laser at 473 nm wavelength. The nonlinear refractive index of the sample is calculated by both techniques. The sample show high nonlinear refractive index. Based on Fresnel-Kirchhoff diffraction integral, the far-field intensity distributions of ring patterns have been calculated. It is found that the experimental results are in good agreement with the theoretical results. Also the optical limiting property of pepper oil is reported. The results obtained in this study prove that the pepper oil has applications in nonlinear optical devices.


2021 ◽  
Vol 76 (4) ◽  
pp. 299-304
Author(s):  
Fu Chen ◽  
Jian-Rong Yang ◽  
Zi-Fa Zhou

Abstract The electron paramagnetic resonance (EPR) parameters (g factor g i , and hyperfine structure constants A i , with i = x, y, z) and local structures for Cu2+ centers in M2Zn(SO4)2·6H2O (M = NH4 and Rb) are theoretically investigated using the high order perturbation formulas of these EPR parameters for a 3d 9 ion under orthorhombically elongated octahedra. In the calculations, contribution to these EPR parameters due to the admixture of d-orbitals in the ground state wave function of the Cu2+ ion are taken into account based on the cluster approach, and the required crystal-field parameters are estimated from the superposition model which enables correlation of the crystal-field parameters and hence the studied EPR parameters with the local structures of the Cu2+ centers. Based on the calculations, the Cu–H2O bonds are found to suffer the axial elongation ratio δ of about 3 and 2.9% along the z-axis, meanwhile, the planar bond lengths may experience variation ratio τ (≈3.8 and 1%) along x- and y-axis for Cu2+ center in (NH4)2Zn(SO4)2·6H2O and Rb2Zn(SO4)2·6H2O, respectively. The theoretical results show good agreement with the observed values.


1974 ◽  
Vol 96 (4) ◽  
pp. 394-400 ◽  
Author(s):  
V. A. Marple ◽  
B. Y. H. Liu ◽  
K. T. Whitby

The flow field in an inertial impactor was studied experimentally with a water model by means of a flow visualization technique. The influence of such parameters as Reynolds number and jet-to-plate distance on the flow field was determined. The Navier-Stokes equations describing the laminar flow field in the impactor were solved numerically by means of a finite difference relaxation method. The theoretical results were found to be in good agreement with the empirical observations made with the water model.


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Eduard Amromin

According to several known experiments, an increase of the incoming flow air content can increase the hydrofoil lift coefficient. The presented theoretical study shows that such increase is associated with the decrease of the fluid density at the cavity surface. This decrease is caused by entrainment of air bubbles to the cavity from the surrounding flow. The theoretical results based on such explanation are in a good agreement with the earlier published experimental data for NACA0015.


Author(s):  
Qahtan Adnan Abed ◽  
Viorel Badescu ◽  
Adrian Ciocanea ◽  
Iuliana Soriga ◽  
Dorin Bureţea

AbstractMathematical models have been developed to evaluate the dynamic behavior of two solar air collectors: the first one is equipped with a V-porous absorber and the second one with a U-corrugated absorber. The collectors have the same geometry, cross-section surface area and are built from the same materials, the only difference between them being the absorbers. V-corrugated absorbers have been treated in literature but the V-porous absorbers modeled here have not been very often considered. The models are based on first-order differential equations which describe the heat exchange between the main components of the two types of solar air heaters. Both collectors were exposed to the sun in the same meteorological conditions, at identical tilt angle and they operated at the same air mass flow rate. The tests were carried out in the climatic conditions of Bucharest (Romania, South Eastern Europe). There is good agreement between the theoretical results and experiments. The average bias error was about 7.75 % and 10.55 % for the solar air collector with “V”-porous absorber and with “U”-corrugated absorber, respectively. The collector based on V-porous absorber has higher efficiency than the collector with U-corrugated absorber around the noon of clear days. Around sunrise and sunset, the collector with U-corrugated absorber is more effective.


Author(s):  
Aleš Tondl ◽  
Horst Ecker

Abstract The possibility of cancelling self-excited vibrations of a mechanical system using parametric excitation is discussed. A two-mass system is considered, with the top mass excited by a flow-generated self-exciting force. The parameter of the connecting stiffness between the base mass and the foundation is a harmonic function of time and represents a parametric excitation. For such a system general conditions for full vibration cancelling are derived and presented. By means of numerical simulation the system is investigated for several sets of parameters. The theoretical results are found to be in very good agreement with the results obtained by simulation. Parameter variations show the extent of the parameter space where significant vibration cancelling can be achieved and illustrate possible applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Rahmani Faouzi ◽  
Amar Touhami Naima ◽  
BelbachirKchairi Abdelmounaim ◽  
Aknin Noura ◽  
Taher Nihade

This work presents the design and analysis of a beam switching antenna for VANET, Wi-Fi, and WiMAX wireless communication systems. The proposed reconfigurable antenna is powered by a coaxial cable and consists of a circular patch, six fish-shaped radiating elements, and a circular planar ground. The antenna was constructed on a Rogers RT5880 substrate. Its dimensions are as follows: 0.81λ0 × 0.81λ0 × 0.03λ0. It performs six reconfigurable operating states, at the same frequency, by controlling the activation and deactivation of six PIN diodes to change the beam’s direction. A theoretical equivalent circuit model of the antenna is extracted. A progressive analysis of improving the antenna characteristic performances is provided. The bandwidth of the proposed antenna is 9.07% (measured), 9.62% (simulated), and 9.31% (theoretical). The designed antenna has a maximum gain of 9.57 dB for all pattern states and a superior efficiency ratio from 85% to 95% over the operating range (5.54 GHz–6.10 GHz). The proposed reconfigurable antenna is fabricated. Measured, simulated, and theoretical results are given and show good agreement, including reflection coefficient (S11) and radiation patterns.


Sign in / Sign up

Export Citation Format

Share Document