Large-Eddy Simulation and Conjugate Heat Transfer Around a Low-Mach Turbine Blade

2013 ◽  
Vol 136 (5) ◽  
Author(s):  
Florent Duchaine ◽  
Nicolas Maheu ◽  
Vincent Moureau ◽  
Guillaume Balarac ◽  
Stéphane Moreau

Determination of heat loads is a key issue in the design of gas turbines. In order to optimize the cooling, an exact knowledge of the heat flux and temperature distributions on the airfoils surface is necessary. Heat transfer is influenced by various factors, like pressure distribution, wakes, surface curvature, secondary flow effects, surface roughness, free stream turbulence, and separation. Each of these phenomenons is a challenge for numerical simulations. Among numerical methods, large eddy simulations (LES) offers new design paths to diminish development costs of turbines through important reductions of the number of experimental tests. In this study, LES is coupled with a thermal solver in order to investigate the flow field and heat transfer around a highly loaded low pressure water-cooled turbine vane at moderate Reynolds number (150,000). The meshing strategy (hybrid grid with layers of prisms at the wall and tetrahedra elsewhere) combined with a high fidelity LES solver gives accurate predictions of the wall heat transfer coefficient for isothermal computations. Mesh convergence underlines the known result that wall-resolved LES requires discretizations for which y+ is of the order of one. The analysis of the flow field gives a comprehensive view of the main flow features responsible for heat transfer, mainly the separation bubble on the suction side that triggers transition to a turbulent boundary layer and the massive separation region on the pressure side. Conjugate heat transfer computation gives access to the temperature distribution in the blade, which is in good agreement with experimental measurements. Finally, given the uncertainty on the coolant water temperature provided by experimentalists, uncertainty quantification allows apprehension of the effect of this parameter on the temperature distribution.

Author(s):  
Florent Duchaine ◽  
Nicolas Maheu ◽  
Vincent Moureau ◽  
Guillaume Balarac ◽  
Stéphane Moreau

Determination of heat loads is a key issue in the design of gas turbines. In order to optimize the cooling, an exact knowledge of the heat flux and temperature distributions on the airfoils surface is necessary. Heat transfer is influenced by various factors, like pressure distribution, wakes, surface curvature, secondary flow effects, surface roughness, free stream turbulence and separation. All these phenomenon are challenges for numerical simulations. Among numerical methods, Large Eddy Simulations (LES) offers new design paths to diminish development costs of turbines through important reductions of the number of experimental tests. In this study, LES is coupled with a thermal solver in order to investigate the flow field and heat transfer around a highly loaded low pressure water-cooled turbine vane at moderate Reynolds number (150 000). The meshing strategy (hybrid grid with layers of prisms at the wall and tetrahedra elsewhere) combined with a high fidelity LES solver gives accurate predictions of the wall heat transfer coefficient for isothermal computations. Mesh convergence underlines the known result that wall-resolved LES requires discretisations for which y+ is of the order of one. The analysis of the flow field gives a comprehensive view of the main flow features responsible of heat transfer, mainly the separation bubble on the suction side that triggers transition to a turbulent boundary layer and the massive separation region on the pressure side. Conjugate heat transfer computation gives access to the temperature distribution in the blade, which is in good agreement with experimental measurements. Finally, given the uncertainty on the coolant water temperature provided by experimentalist, uncertainty quantification allows apprehending the effect of this parameter on the temperature distribution.


Author(s):  
Franz Puetz ◽  
Johannes Kneer ◽  
Achmed Schulz ◽  
Hans-Joerg Bauer

An increased demand for lower emission of stationary gas turbines as well as civil aircraft engines has led to new, low emission combustor designs with less liner cooling and a flattened temperature profile at the outlet. As a consequence, the heat load on the endwall of the first nozzle guide vane is increased. The secondary flow field dominates the endwall heat transfer, which also contributes to aerodynamic losses. A promising approach to reduce these losses is non-axisymmetric endwall contouring. The effects of non-axisymmetric endwall contouring on heat transfer and film cooling are yet to be investigated. Therefore, a new cascade test rig has been set up in order to investigate endwall heat transfer and film cooling on both a flat and a non-axisymmetric contoured endwall. Aerodynamic measurements that have been made prior to the upcoming heat transfer investigation are shown. Periodicity and detailed vane Mach number distributions ranging from 0 to 50% span together with the static pressure distribution on the endwall give detailed information about the aerodynamic behavior and influence of the endwall contouring. The aerodynamic study is backed by an oil paint study, which reveals qualitative information on the effect of the contouring on the endwall flow field. Results show that the contouring has a pronounced effect on vane and endwall pressure distribution and on the endwall flow field. The local increase and decrease of velocity and the reduced blade loading towards the endwall is the expected behavior of the 3d contouring. So are the results of the oil paint visualization, which show a strong change of flow field in the leading edge region as well as that the contouring delays the horse shoe vortex hitting the suction side.


Author(s):  
F. Montomoli ◽  
P. Adami ◽  
S. Della Gatta ◽  
F. Martelli

A reliable and accurate prediction of temperature field in hot components plays a key role in design process of modern gas turbines. The first stages of turbine and the combustor basket are usually subjected to high heat transfer rates and hot gas temperatures exceed the melting point of the employed alloys. The accurate knowledge of temperature distribution could extend the life of critical components through an accurate design of coolant systems. The present work concerns the upgrade of the finite volume CFD (Computational Fluid Dynamic) solver HybFlow, (see Adami et al.[1]) to simulate heat transfer in gas turbine cooling devices. In particular, the conjugate simulation of flow field heat transfer and metal heat conduction has been considered. To this aim, the original solver has been coupled to a routine solving the Fourier equation in solid domain. This modification allows the “conjugate heat transfer” investigation of heat transfer in fluid flow and solid domain simultaneously. The code has been validated through two different test-case applications. The first is a laminar flow over a flat plate, while the second is a film-cooled plate. Finally, a complete 3D film cooled NGV (Nozzle Guide Vane) has been investigated as an example for a more complex application. The simulation couples the thermal field inside the metal and the flow field in the vane, in the two plenum channels and in the six rows of cooling channels as well.


Author(s):  
Atsushi Tateishi ◽  
Toshinori Watanabe ◽  
Takehiro Himeno

This paper describes basic ideas for the design of a new computational fluid dynamics (CFD) code for large-eddy simulation (LES), as well as presenting fundamental validation and demonstration cases. The developed code combines highorder structured solver with overset mesh technique, which enables to control mesh density easily with keeping high mesh quality. The validations were conducted over two different flow regimes. The mesh size criteria for the present code were identified from the systematic mesh study of wall-bounded channel flow. In addition, the wake profile after the circular cylinder as a validation of free shear flow showed good agreement with the reference data. Then the validated code was applied to the flow field of highly loaded stator vane. The developed solver reproduced the position of separation bubble accurately however, the velocity profiles on the vane needed improvement by introducing free stream turbulence. From the sequence of validation and application studies, it was concluded that the present code can be used for the researches of fundamental turbulent flow field in turbomachinery.


Author(s):  
Stephen K. Roberts ◽  
Metin I. Yaras

In this paper, large-eddy simulation of the transition process in a separation bubble is compared to experimental results. The measurements and simulations are conducted under low free-stream turbulence conditions over a flat plate with a streamwise pressure distribution typical of those encountered on the suction side of turbine airfoils. The computational grid is sufficiently refined that the effects of sub-grid scale turbulence are adequately represented by the numerical dissipation of the computational algorithm. The large-eddy simulations are shown to accurately capture the transition process in the separated shear layer. The results of these simulations are used to gain further insight into the breakdown mechanisms in transitioning separation bubbles.


2021 ◽  
Author(s):  
Kenji Miki ◽  
Ali Ameri

Abstract There is a need to improve predictions of losses resulting from large eddy simulations (LES) of low-pressure turbines (LPT) in gas turbines. This may be done by assessing the accuracy of predictions against validation data and understanding the source of any inaccuracies. LES is a promising approach for capturing the laminar/turbulent transition process in a LPT. In previous studies, the authors utilized LES to model the flow field over a Variable Speed Power Turbine (VSPT) blade and successfully captured characteristic features of separation/reattachment and transition on the suction side at both the cruise (positive incidence) and take-off conditions (negative incidence) and as well, simulated the effect of free-stream turbulence (FST) on those phenomena. The predicted pressure loading profiles agreed well with the experimental data for both a high and a low FST case at a Reynolds number of Reex = 220,000. In this paper, we present wake profiles resulting from computations for a range of FST values. Although the predicted wake profiles for the lowest FST case (Tu = 0.5%) matched the experimental data, at higher FST (Tu = 10–15%,) the wake was wider than the experimentally measured wake and for both cases were displaced laterally when compared to the experimental measurements. In our investigation of the causes of the said discrepancies we have identified important effects which could strongly influence the predicted wake profile. Predicted losses were improved by assuring the validity of the flow solution. This was done by utilizing spectral analysis to scrutinize the dynamic behavior of the wake and determine solution accuracy resulting from low mesh density and low accuracy of convective modeling.


2017 ◽  
Vol 139 (11) ◽  
Author(s):  
M. Fadl ◽  
L. He

Natural convection is an important heat transfer mode for flexible operations of gas turbines and steam turbines. Its prediction presents considerable challenges. The strong interdependence between fluid and solid parts points to the need for coupled fluid–solid conjugate heat transfer (CHT) methods. The fundamental fluid–solid time scale disparity is further compounded by the long-time scales of practical turbine flexible operations. In addition, if a high-fidelity flow model (e.g., large eddy simulation (LES)) is adopted to resolve turbulence fluctuations, extra mesh dependency on solid domain mesh may arise. In this work, understanding of the extra solid mesh dependency in a directly coupled LES based CHT procedure is gained by an interface response analysis, leading to a simple and clear characterization of erroneously predicted unsteady interface temperatures and heat fluxes. A loosely coupled unsteady CHT procedure based on a multiscale methodology for solving problems with large time scale disparity is subsequently developed. A particular emphasis of this work is on efficient and accurate transient CHT solutions in conjunction with the turbulence eddy resolved modeling (LES) for natural convection. A two-scale flow decomposition associated with a corresponding time-step split is adopted. The resultant triple-timing formation of the flow equations can be solved efficiently for the fluid–solid coupled system with disparate time scales. The problem statement, analysis, and the solution methods will be presented with case studies to underline the issues of interest and to demonstrate the validity and effectiveness of the proposed methodology and implemented procedure.


Author(s):  
M. Ghorab ◽  
S. I. Kim ◽  
I. Hassan

Cooling techniques play a key role in improving efficiency and power output of modern gas turbines. The conjugate technique of film and impingement cooling schemes is considered in this study. The Multi-Stage Cooling Scheme (MSCS) involves coolant passing from inside to outside turbine blade through two stages. The first stage; the coolant passes through first hole to internal gap where the impinging jet cools the external layer of the blade. Finally, the coolant passes through the internal gap to the second hole which has specific designed geometry for external film cooling. The effect of design parameters, such as, offset distance between two-stage holes, gap height, and inclination angle of the first hole, on upstream conjugate heat transfer rate and downstream film cooling effectiveness performance are investigated computationally. An Inconel 617 alloy with variable properties is selected for the solid material. The conjugate heat transfer and film cooling characteristics of MSCS are analyzed across blowing ratios of Br = 1 and 2 for density ratio, 2. This study presents upstream wall temperature distributions due to conjugate heat transfer for different gap design parameters. The maximum film cooling effectiveness with upstream conjugate heat transfer is less than adiabatic film cooling effectiveness by 24–34%. However, the full coverage of cooling effectiveness in spanwise direction can be obtained using internal cooling with conjugate heat transfer, whereas adiabatic film cooling effectiveness has narrow distribution.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2096
Author(s):  
Joon Ahn ◽  
Jeong Chul Song ◽  
Joon Sik Lee

Large eddy simulations are performed to analyze the conjugate heat transfer of turbulent flow in a ribbed channel with a heat-conducting solid wall. An immersed boundary method (IBM) is used to determine the effect of heat transfer in the solid region on that in the fluid region in a unitary computational domain. To satisfy the continuity of the heat flux at the solid–fluid interface, effective conductivity is introduced. By applying the IBM, it is possible to fully couple the convection on the fluid side and the conduction inside the solid and use a dynamic subgrid scale model in a Cartesian grid. The blockage ratio (e/H) is set at 0.1, which is typical for gas turbine blades. Through conjugate heat transfer analysis, it is confirmed that the heat transfer peak in front of the rib occurs because of the impinging of the reattached flow and not the influence of the thermal boundary condition. When the rib turbulator acts as a fin, its efficiency and effectiveness are predicted to be 98.9% and 8.32, respectively. When considering conjugate heat transfer, the total heat transfer rate is reduced by 3% compared with that of the isothermal wall. The typical Biot number at the internal cooling passage of a gas turbine is <0.1, and the use of the rib height as the characteristic length better represents the heat transfer of the rib.


Author(s):  
Dieter E. Bohn ◽  
Karsten A. Kusterer

A leading edge cooling configuration is investigated numerically by application of a 3-D conjugate fluid flow and heat transfer solver, CHT-Flow. The code has been developed at the Institute of Steam and Gas Turbines, Aachen University of Technology. It works on the basis of an implicit finite volume method combined with a multi-block technique. The cooling configuration is an axial turbine blade cascade with leading edge ejection through two rows of cooling holes. The rows are located in the vicinity of the stagnation line, one row is on the suction side, the other row is on the pressure side. The cooling holes have a radial ejection angle of 45°. This configuration has been investigated experimentally by other authors and the results have been documented as a test case for numerical calculations of ejection flow phenomena. The numerical domain includes the internal cooling fluid supply, the radially inclined holes and the complete external flow field of the turbine vane in a high resolution grid. Periodic boundary conditions have been used in the radial direction. Thus, end wall effects have been excluded. The numerical investigations focus on the aerothermal mixing process in the cooling jets and the impact on the temperature distribution on the blade surface. The radial ejection angles lead to a fully three dimensional and asymmetric jet flow field. Within a secondary flow analysis it can be shown that complex vortex systems are formed in the ejection holes and in the cooling fluid jets. The secondary flow fields include asymmetric kidney vortex systems with one dominating vortex on the back side of the jets. The numerical and experimental data show a good agreement concerning the vortex development. The phenomena on the suction side and the pressure side are principally the same. It can be found that the jets are barely touching the blade surface as the dominating vortex transports hot gas under the jets. Thus, the cooling efficiency is reduced.


Sign in / Sign up

Export Citation Format

Share Document