Real-Time Computational Model of Ball-Milled Fractal Structures

Author(s):  
Constantine C. Doumanidis ◽  
I. E. Gunduz ◽  
Claus Rebholz ◽  
Charalabos C. Doumanidis

Ball milling (BM) offers a flexible process for nanomanufacturing of reactive bimetallic multiscale particulates (nanoheaters) for self-heated microjoining engineering materials and biomedical tooling. This paper introduces a mechanics-based process model relating the chaotic dynamics of BM with the random fractal structures of the produced particulates, emphasizing its fundamental concepts, underlying assumptions, and computation methods. To represent Apollonian globular and lamellar structures, the simulation employs warped ellipsoidal (WE) primitives of elasto-plastic strain-hardening materials, with Maxwell–Boltzmann distributions of ball kinetics and thermal transformation of hysteretic plastic, frictional, and residual stored energetics. Interparticle collisions are modeled via modified Hertzian contact impact mechanics, with local plastic deformation yielding welded microjoints and resulting in cluster assembly into particulates. The model tracks the size and diversity of such particulate populations as the process evolves via sequential collision and integration events. The simulation was shown to run in real-time computation speeds on modest hardware, and match successfully the fractal dimension and contour shape of experimental ball-milled Al–Ni particulate micrographs. Thus, the model serves as a base for the design of a feedback control system for continuous BM.

Fractals ◽  
2006 ◽  
Vol 14 (01) ◽  
pp. 27-35 ◽  
Author(s):  
TOMOYA SUZUKI ◽  
TOHRU IKEGUCHI ◽  
MASUO SUZUKI

Iterative function systems are often used for investigating fractal structures. The method is also referred as Chaos Game Representation (CGR), and is applied for representing characteristic structures of DNA sequences visually. In this paper, we proposed an original way of plotting CGR to easily confirm the property of the temporal evaluation of a time series. We also showed existence of spurious characteristic structures of time series, if we carelessly applied the CGR to real time series. We revealed that the source of spurious identification came from non-uniformity of the frequency histograms of the time series, which is often the case of analyzing real time series. We also showed how to avoid such spurious identification by applying the method of surrogate data and introducing conditional probabilities of the time series.


1994 ◽  
Vol 363 ◽  
Author(s):  
Paul S. Bowen ◽  
Steve K. Phelps ◽  
Harry I. Ringermacher ◽  
Richard D. Veltri

AbstractThe chemical vapor deposition of silicon nitride can be used to protect advanced materials and composites from high temperature, corrosive, and oxidative environments. Desired coating characteristics, such as uniformity and morphology, cannot be measured in-situ by traditional sensors due to the adverse conditions within the high-temperature reactor. A control strategy has been developed which utilizes a process model and an advanced laser-based sensor to measure the deposition rate of the silicon nitride coating in real-time. The control system is based on a three level hierarchical architecture which functionally separates the process control into PID, supervisory and advanced sensor-based control. Optimal setpoint schedules for the supervisory level are derived from a quasi-fuzzy logic inverse mapping of the process model. An advanced sensor utilizing laser ultrasonics provides real-time coating thickness estimates. Model bias is characterized for each reactor and is correlated on-line with the sensor's deposit thickness estimate. Deviations from model predictions may result in parametric changes to the process model. New setpoint schedules are then created as input to the supervisory control level by regenerating the inverse map of the updated process model.


Author(s):  
Roberto Groppetti ◽  
Giuseppe Comi

Abstract Hydro-Abrasive Jet Machining (HAJM) has demonstrated its suitability for several applications in the machining of a wide spectrum of materials (metals, polymers, ceramics, fibre reinforced composites, etc.). The paper is a contribution to the computer control, integration and optimization of HAJM process in order to establish a hierarchical control architecture and a platform for the implementation of a real-time Adaptive Control Optimization (ACO) module. The paper presents the approach followed and the main results obtained during the development and implementation of a HAJM cell and its computerized controller. A critical analysis of the process variables available in the literature is presented, in order to identify the process variables and to define a process model suitable for HAJM real-time control and optimization. Besides for HAJM computer control, in order to correlate process variables and parameters with machining results, a process model and an optimization procedure are necessary in order to avoid expensive and time-consuming experiments for the determination of optimal machining conditions. The paper presents the configuration of the cell and the specific components adopted in order to make possible a fully computerized control of the process, and the architecture of the controller, capable to manage the several logical and analogical signals from the different modules of the cell, for multiprogramming, process monitoring, controlling, process parameters predetermination, process condition multiobjective optimization. A prediction and an optimization model is presented allowing the identification of optimal machining conditions using multiobjective programming. This model is based on the definition of an economy function and a productivity function, with suitable constraints relevant to the required machining quality, the required kerfing depth and the available resources. A test case based on experimental results is discussed in order to validate the model.


The implementation of several modern concepts of enterprise architecture creation is analyzed and real-time business process generation is described. Cloud-based self-generated business service is constructed as a basis of the resulting concept with an aim to increase the flexibility of enterprise and introduce AaaS (architecture as a service). Under particular business request in form of correctly formulated strategic goal the generation of business process model is produced. The result of the generation is cross-cutting business process architecture model, which is approved or rejected/corrected by business owner expertise. During generation all necessary requirements for supporting resources, such as information, know-how, intellectual and professional skills, inputs and outputs, quality and operational risk limitations, control and monitoring, are formed. All formed requirements have to be satisfied by appropriate selections from the cloud facilities and again approved. Finally, after several iterations, the business model will be able to be realized in reality and could be executed with predicted results. Briefly, that means that certain sets of valued and weighted business process replicas are located in clouds and served in clouds. Thus, enterprise architecture becomes a regular service from clouds extending row of SOA in the name of AaaS. In addition, the advanced view on the topic is provided with an attempt to install a virtual SOA torrent that catches services from the internet and makes them available to customers and represents a business service basis for real-time business processes.


Author(s):  
Tuomas Saarikoski ◽  
Matti Pietola

This paper presents a Hardware-in-the-Loop (HIL) test setup used for studying the dynamics of an elastomer supported machine bed. The setup uses real elastomer dampers and modeled machine dynamics (process model) connected together via real-time interface. The HIL approach was chosen since the elastomers are a critical part of the system, however, determining their properties for engineering needs can be a challenging task. Accurate elastomer models include many parameters that can only be determined by experimentally, and even then their implementation for real-life applications is not always practical. Using real elastomers supports in the simulation removes uncertainties associated with classic elastomer models, while simulated process makes it possible to test different scenarios fast and with good repeatability. The process model includes a description of the machine body, a rotating unbalanced drive mechanism creating cyclic loading and external excitation forces acting on the machine. The method enables testing of machine bed supports in a realistic operating environment. A test rig was built for housing the elastomers incorporating a hydraulic actuator for producing the process movement. The hydraulic circuit was designed for good dynamic performance with predictive control to minimize delays in the real-time interface. It was found that the HIL-setup can provide fast and accurate information about the plant model behavior in different operating scenarios using the elastomer supports.


2020 ◽  
Vol 66 (No. 1) ◽  
pp. 33-42
Author(s):  
Viktor Baranovsky ◽  
Olena Truchanska ◽  
Maria Pankiv ◽  
Valentina Bandura

The purpose of this research is the further development of the methodology and methods of optimising the parameters of root pile  combined cleaners of a root crop harvesting machine. We have conducted theoretical and experimental studies of the combined  cleaning system’s functioning process. By executing the analysis, we found the motion of the fodder beet through the working surfaces of the feeding conveyor and the auger installed above it. We have got an analytical and empirical process model for the fodder beet’s oblique sub-hit on the auger turn. It characterises the dependence of the total rate of the sub-hit coefficient of the technological  interaction of the roots and the depth of the root damage, which depend on the main parameters of the combined cleaning system. We found out the rational limits of the basic structural and kinematic parameters of the combined cleaning system by the provided minimum fodder beet damage. It is theoretically justified that the minimum damage to roots of the beet roots will be at a contact angle of zero (γ ≅ 0) or close to it. This condition is protected with the following combinations of parameters: a screw diameter of D = 0.4, 0.6, 0.8 m and a screw speed of n = 99, 72, 50 rpm, respectively.


2013 ◽  
Vol 38 (1) ◽  
pp. 43-46 ◽  
Author(s):  
M. Mrunalini ◽  
T. V. Suresh Kumar ◽  
K. Rajani Kanth

2021 ◽  
Vol 73 (05) ◽  
pp. 47-48
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper OTC 30838, “Shell Appomattox Model-Based Operations From Design to Production: A Game Changer in Gulf of Mexico Deepwater Operation,” by Robert Tulalian, Shell, and Evan Keever and Ankur Rastogi, Kongsberg, prepared for the 2020 Offshore Technology Conference, originally scheduled to be held in Houston, 4–7 May. The paper has not been peer reviewed. Copyright 2020 Offshore Technology Conference. Reproduced by permission. The complete paper discusses how large operations such as Appomattox in the Gulf of Mexico’s deepwater Norphlet formation can use an integrated dynamic simulation-based solution throughout the project life cycle to aid in design verification, operator training, startup support, and real-time surveillance. The authors write that their recommendations and findings can be applied to similar project implementation efforts elsewhere in the industry. Introduction The Appomattox development spans Mississippi Canyon Blocks 348, 391, 392, and 393. Peak production rates are estimated to be approximately 175,000 BOE/D, with water injection planned for the future to support reservoir pressures. Appomattox includes a combined cycle steam system, using process waste heat to generate steam. This steam can be used to drive a generator, providing extra power for the facility. The Appomattox facility can be seen in Fig. 1. A multipurpose dynamic simulator (MPDS) was developed to address the inherent complexities of the Appomattox system, providing a high-fidelity integrated model that simulates both top-sides and subsea process conditions. This model was integrated with the Appomattox control system and deployed in a setup to mimic the offshore control room, creating a realistic training environment for operators. The MPDS was completed over 1 year before first oil, providing ample time for operator training and other use cases such as distributed-control-system (DCS) checkout and engineering studies. Because of the success of the MPDS, the operator applied the existing Appomattox model to the operation phase through the creation of a real-time surveillance system (RTS). Connecting the process model to the facility’s historian by open-platform communications (OPC) enables the RTS to serve as a virtual copy of the live facility, mimicking process conditions in real time. This enables the RTS to serve as a platform for useful surveillance applications such as virtual flow metering, blockage detection, and equipment-performance monitoring. Process Model Development Once the decision to build an MPDS was made, the project team determined which systems would be included in the scope of the model as well as what data would be used for input and validation. Because the MPDS would be used for both engineering and operations use, most systems were included in the scope and modeled at high fidelity to maximize potential benefits.


Sign in / Sign up

Export Citation Format

Share Document