Heat Transfer Inside the Physical Vapor Transport Reactor

2016 ◽  
Vol 138 (10) ◽  
Author(s):  
Zeyi Zhang ◽  
Min Xu ◽  
Liqiu Wang

The physical vapor transport (PVT) method is widely adopted to produce semiconductor materials including silicon carbide (SiC). This work focuses on the role of thermal radiation for the heat transfer inside the PVT reactor. The radiation is characterized by two dimensionless parameters relating to the SiC charge and to the growth chamber. A simulation program is set up with the finite-volume method (FVM), considering heat generation, conduction, and radiation under the steady-state condition. Comprehensive results are obtained by tuning values of dimensionless parameters and the associated controlling variables, such as the cooling temperature and the coil current density, and illustrated in the phase diagrams. From the study, we find that the charge size has negligible influence on the temperature field, the crucible conduction determines the temperature level, and the relative strength of the chamber radiation against the crucible conduction modifies the temperature field on the SiC ingot. Finally, design guidelines are proposed with the instructive phase diagram to achieve the optimized thermal performance of the PVT reactor.

2005 ◽  
Vol 483-485 ◽  
pp. 25-30 ◽  
Author(s):  
Peter J. Wellmann ◽  
Thomas L. Straubinger ◽  
Patrick Desperrier ◽  
Ralf Müller ◽  
Ulrike Künecke ◽  
...  

We review the development of a modified physical vapor transport (M-PVT) growth technique for the preparation of SiC single crystals which makes use of an additional gas pipe into the growth cell. While the gas phase composition is basically fixed in conventional physical vapor transport (PVT) growth by crucible design and temperature field, the gas inlet of the MPVT configuration allows the direct tuning of the gas phase composition for improved growth conditions. The phrase "additional" means that only small amounts of extra gases are supplied in order to fine-tune the gas phase composition. We discuss the experimental implementation of the extra gas pipe and present numerical simulations of temperature field and mass transport in the new growth configuration. The potential of the growth technique will be outlined by showing the improvements achieved for p-type doping of 4H-SiC with aluminum, i.e. [Al]=9⋅1019cm-3 and ρ<0.2Ωcm, and n-type doping of SiC with phosphorous, i.e. [P]=7.8⋅1017cm-3.


2012 ◽  
Vol 588-589 ◽  
pp. 1842-1848
Author(s):  
Wen Cai Wang ◽  
Yu Hong Jiang ◽  
Tao Hou ◽  
Wei Liu ◽  
Yang Lu ◽  
...  

According to the principle of heat transfer, the temperature field equation in the leeward tunnel was set up and the experimental device with a ratio of 1:20 was built. When it happened to fire in roadway, the correctness of the temperature field equation can be verified by the experiment. In experiments, the armored thermocouple and color paperless recorder were used to record the temperature of each measuring point. The S-3-300 pitot tube and YJB-2500 compensation micro-manometer were used to determine the wind speed. When the mine roadway fired, the experiment determined the temperature field equation experiment coefficient of Kc. It showed that in the developing phase of the fire Kc= 15 ~ 20, in the stable phase of the fire Kc= 10 ~ 15, in the failing phase of the fire Kc= 20 ~ 25.


2012 ◽  
Vol 224 ◽  
pp. 93-96 ◽  
Author(s):  
Xin Jian Wang ◽  
Ri Yun Li ◽  
Jian Sheng Chen

In order to detect the concentrated leakage passages(CLP) more effectively and precisely, the temperature field emulation method of irregularity dam including seepage and leakage is established based on numerical optimization of concentrated leakage passage detection with kinds of boundary conditions. In this model, the effect of lapse rate, radiation from sun and wind speed on temperature field is included. The flow states of underground water determined, the heat transfer characteristics presented and the coupled relation between seepage and temperature distribution constructed, the coupled equations between seepage and heat transfer are set up.


2019 ◽  
Vol 26 (2) ◽  
pp. 139-142
Author(s):  
Honglei WU ◽  
Zuoyan QIN ◽  
Xueyong TIAN ◽  
Zhenhua SUN ◽  
Baikui LI ◽  
...  

The improved resistively-heated furnace with two heaters established a vertical thermal gradient to control nucleation during AlN single crystals Physical Vapor Transport (PVT) growth on polycrystal tungsten substrates. During the high temperature (> 1850 °C) heating process, the reverse temperature field (i.e., the temperature difference between the sublimation zone and the crystalline zone ΔT < 0) was obtained to reduce the number of nuclei on the tungsten substrate. During growth, the proper positive values of ΔT T were chosen to content the supersaturation values (0.25 < S < 0.3). The reverse temperature condition during high temperature (> 1850 °C) cooling was fulfilled to avoid recrystallization on grown AlN crystal. AlN single crystals made through the method were characterized by X-ray diffractions (XRD) and Raman spectroscopy.


Author(s):  
Liang Peng ◽  
Zhenlei Chen ◽  
Yi Hu

Aiming at the issues of low accuracy and poor feasibility of the analytical results of the turbocharger turbine temperature field under operating conditions, a full-domain conjugate heat transfer numerical model was established by the conjugate heat transfer and finite volume method. The temperature field characteristics of each component of the turbocharger turbine were analyzed. The numerical and experimental test results were compared and analyzed. The global conjugate heat transfer model avoids the input of a large number of hypothetical data on the interface between fluid and solid in the traditional model, and makes the calculation process closer to the actual situation. Through the comparison with the experimental results, the accuracy of the turbine temperature field obtained by the global conjugate heat transfer model is more reasonable and more accurate than that of the traditional model, which verifies the reliability and accuracy of the global conjugate heat transfer model.


2004 ◽  
Vol 815 ◽  
Author(s):  
Govindhan Dhanaraj ◽  
Feng Liu ◽  
Michael Dudley ◽  
Hui Zhang ◽  
Vish Prasad

AbstractSiC single crystals have been grown by seeded sublimation method using physical vapor transport (PVT) system designed and fabricated in our laboratory. A novel multi-segmented graphite insulation has been used for improved heat containment in the hot-zone. Numerical modeling was used to obtain the temperature field and predict various growth parameters. The grown crystals were characterized using AFM, SWBXT and chemical etching.


Author(s):  
T. T. Zhang ◽  
L. Jia ◽  
C. W. Li ◽  
Y. Jaluria

An experimental system for single-phase gas flow in microchannels was set up. The effects of viscous heating on the temperature field in the flow were studied experimentally. Also, a theoretical model for the flow and heat transfer in the slip flow region was developed and the resulting equations were solved analytically by using a method based on the superposition principle. The results obtained agree well with the experimental data. The study also provides greater insight into microchannel flow and the associated heat transfer.


Sign in / Sign up

Export Citation Format

Share Document