Reliability Analysis of Piles in Multilayer Soil in Mooring Dolphin Structures

Author(s):  
Reda Farag ◽  
Achintya Haldar ◽  
Mahmoud El-Meligy

Reliability of complicated mooring dolphin structures (MDS) is estimated using few deterministic evaluations and an improved response surface method denoted as IRSM-second-order reliability method (SORM). It is a hybrid approach consisting of an IRSM, SORM, and several advanced factorial schemes. For this type of sophisticated analysis, simulation-based algorithm is impractical to implement. The concept is applied to estimate the risk of an existing MDS at the shore of Nile Delta. It is a large diameter steel-pile embedded in the sea bed. The Pile–Soil-System is represented by a nonlinear finite element model (NLFEM). In NLFEM, the steel pile is assumed to behave linearly under the considered working loads, but the soil is considered to behave nonlinearly. Moreover, the contact nonlinearity between the pile and the soil is taken into account. It is demonstrated that the reliability information on MDS can be extracted using tens of deterministic evaluations. It has been found that incorporation of the contact nonlinearity into analysis has no effect on the pile behavior. In the probabilistic analysis, the uncertainties in loading, material properties, and geometric details are taken into account. Both operational and structural limit states are considered. For the MDS considered in this study, it has been observed that the strength limit state (flexural) is more critical than the operational limit state (drift). The most important variables are the mooring loads, the radius and thickness of the pile, and the modulus of elasticity of steel.

1993 ◽  
Vol 20 (4) ◽  
pp. 564-573 ◽  
Author(s):  
R. O. Foschi ◽  
F. Z. Yao

This paper presents a reliability analysis of wood I-joists for both strength and serviceability limit states. Results are obtained from a finite element analysis coupled with a first-order reliability method. For the strength limit state of load-carrying capacity, multiple failure modes are considered, each involving the interaction of several random variables. Good agreement is achieved between the test results and the theoretical prediction of variability in load-carrying capacity. Finally, a procedure is given to obtain load-sharing adjustment factors applicable to repetitive member systems such as floors and flat roofs. Key words: reliability, limit state design, wood composites, I-joist, structural analysis.


2020 ◽  
Vol 8 (5) ◽  
pp. 352
Author(s):  
Jacob Andersen ◽  
Rune Abrahamsen ◽  
Thomas Andersen ◽  
Morten Andersen ◽  
Torben Baun ◽  
...  

The design of large diameter monopiles (8–10 m) at intermediate to deep waters is largely driven by the fatigue limit state and mainly due to wave loads. The scope of the present paper is to assess the mitigation of wave loads on a monopile by perforation of the shell. The perforation design consists of elliptical holes in the vicinity of the splash zone. Wave loads are estimated for both regular and irregular waves through physical model tests in a wave flume. The test matrix includes waves with Keulegan–Carpenter ( K C ) numbers in the range 0.25 to 10 and covers both fatigue and ultimate limit states. Load reductions in the order of 6%–20% are found for K C numbers above 1.5. Significantly higher load reductions are found for K C numbers less than 1.5 and thus the potential to reduce fatigue wave loads has been demonstrated.


2021 ◽  
Vol 11 (2) ◽  
pp. 648
Author(s):  
Agnieszka Dudzik ◽  
Beata Potrzeszcz-Sut

The objective of the article involves presenting two approaches to the structure reliability analysis. The primary research method was the First Order Reliability Method (FORM). The Hasofer–Lind reliability index β in conjunction with transformation method in the FORM was adopted as the measure of reliability. The first proposal was combining NUMPRESS software with the non-commercial KRATA program. In this case, the implicit form of the random variables function was created. Limit state function was symbolically given in the standard math notation as a function of the basic random and external variables. The second analysis proposed a hybrid approach enabling the introduction of explicit forms of limit state functions to the reliability program. To create the descriptions of this formula, the neural networks were used and our own original FEM module. The combination of conventional and neural computing can be seen as a hybrid system. The explicit functions were implemented into NUMPRESS software. The values of the reliability index for different descriptions of the mathematical model of the structure were determined. The proposed hybrid approach allowed us to obtain similar results to the results from the reference method.


2012 ◽  
Vol 12 (05) ◽  
pp. 1250037 ◽  
Author(s):  
H. B. BASAGA ◽  
M. E. KARTAL ◽  
A. BAYRAKTAR

This paper presents the reliability analysis of the frame structures with semi-rigid connections. For this purpose, the SEMIFEM finite element program that is capable of dealing with the semi-rigid connections is coded in FORTRAN. Then, this program is connected to the reliability algorithm. The direct coupling method, which is a combination of the reliability method and finite element method, is utilized to determine the reliability indexes and probabilities of failure for the structure. The first order reliability method (FORM) is the one favored in the present reliability analysis. Two sets of steel framed structures are analyzed; each of four and eight stories, consisting of a portal frame and three types of concentrically braced frames. Concrete compression strength limit state in reinforced concrete (RC) columns, steel strength limit state in steel braces and inter-story drift limit state are considered in reliability evaluation. According to the limit states, X braced frames are determined as the safest structures, while the portal frames are regarded as the most unsafe structures. As the connection percentage increases, the safety of the structure increases in terms of inter-story drift and steel strength limit states, but decreases for concrete compression strength limit states.


2011 ◽  
Vol 368-373 ◽  
pp. 2711-2715 ◽  
Author(s):  
De Yun Ding ◽  
Xiu Ren Yang ◽  
Wei Dong Lu ◽  
Wei Ning Liu ◽  
Mei Yan ◽  
...  

In more and more complicated urban building environment, a new construction method that metro engineering is constructed by large-diameter shield and shallow mining method can be regarded as a great attempt in China. By taking the Gaojiayuan station of Beijing metro line 14 as an engineering background, the main construction steps for the platform of the metro station built by a large-size shield with an outer diameter of 10 m and the Pile-Beam-Arch (PBA) method are introduced. Based on the soil-structure interaction theory, a two-dimensional finite element model is used to simulate the shield tunneling and the platform construction by the PBA method to enlarge the shield tunnel. The ground deformation and structural stress of the platform are predicted. The numerical results can be regarded as a valuable reference for the application of the new construction method in Beijing metro line 14.


Author(s):  
Abul Fazal M. Arif ◽  
Ahmad S. Al-Omari ◽  
Anwar K. Sheikh ◽  
Yagoub Al-Nassar ◽  
M. Anis

Double submerged spiral-welded pipe (SWP) is used extensively throughout the world for large-diameter pipelines. Fabrication-induced residual stresses in spiral welded pipe have received increasing attention in gas, oil and petrochemical industry. Several studies reported in the literature verify the critical role of residual stresses in the failure of these pipes. Therefore, it is important that such stresses are accounted for in safety assessment procedures such as the British R6 and BS7910. This can be done only when detailed information on the residual stress distribution in the component is known. In industry, residual stresses in spiral welded pipe are measured experimentally by means of destructive techniques known as Ring Splitting Test. In this study, statistical analysis and linear-regression modeling were used to study the effect of several structural, material and welding parameters on ring splitting test opening for spiral welded pipes. The experimental results were employed to develop an appropriate regression equation, and to predict the residual stress on the spiral welded pipes. It was found that the developed regression equation explains 36.48% of the variability in the ring opening. In the second part, a 3-D finite element model is presented to perform coupled-field analysis of the welding of spiral pipe. Using this model, temperature as well as stress fields in the region of the weld edges is predicted.


1989 ◽  
Vol 16 (2) ◽  
pp. 124-139 ◽  
Author(s):  
Robert G. Driver ◽  
D. J. Laurie Kennedy

Design standards provide little information for the design of I-shaped steel beams not loaded through the shear centre and therefore subjected to combined flexure and torsion. In particular, methods for determining the ultimate capacity, as is required in limit states design standards, are not presented. The literature on elastic analysis is extensive, but only limited experimental and analytical work has been conducted in the inelastic region. No comprehensive design procedures, applicable to limit states design standards, have been developed.From four tests conducted on cantilever beams, with varying moment–torque ratios, it is established that the torsional behaviour has two distinct phases, with the second dominated by second-order geometric effects. This second phase is nonutilizable because the added torsional restraint developed is path dependent and, if deflections had been restricted, would not have been significant. Based on the first-phase behaviour, a normal and shearing stress distribution on the cross section is proposed. From this, a moment–torque ultimate strength interaction diagram is developed, applicable to a number of different end and loading conditions. This ultimate limit state interaction diagram and serviceability limit states, based on first yield and on distortion limitations, provide a comprehensive design approach for these members. Key words: beams, bending moment, flexure, inelastic, interaction diagram, I-shaped, limit states, serviceability, steel, torsion, torque, ultimate.


1996 ◽  
Vol 33 (5) ◽  
pp. 815-821 ◽  
Author(s):  
A B Schriver ◽  
A J Valsangkar

Recently, the limit states approach using factored strength has been recommended in geotechnical design. Some recent research has indicated that the application of limit states design using recommended load and strength factors leads to conservative designs compared with the conventional methods. In this study the influence of sheet pile wall geometry, type of water pressure distribution, and different methods of analysis on the maximum bending moment and achor rod force are presented. Recommendations are made to make the factored strength design compatible with conventional design. Key words: factored strength, working stress design, ultimate limit state design, anchored sheet pile wall, bending moment, anchor rod force.


Author(s):  
Eric Brehm ◽  
Robert Hertle ◽  
Markus Wetzel

In common structural design, random variables, such as material strength or loads, are represented by fixed numbers defined in design codes. This is also referred to as deterministic design. Addressing the random character of these variables directly, the probabilistic design procedure allows the determination of the probability of exceeding a defined limit state. This probability is referred to as failure probability. From there, the structural reliability, representing the survival probability, can be determined. Structural reliability thus is a property of a structure or structural member, depending on the relevant limit states, failure modes and basic variables. This is the basis for the determination of partial safety factors which are, for sake of a simpler design, applied within deterministic design procedures. In addition to the basic variables in terms of material and loads, further basic variables representing the structural model have to be considered. These depend strongly on the experience of the design engineer and the level of detailing of the model. However, in the clear majority of cases [1] failure does not occur due to unexpectedly high or low values of loads or material strength. The most common reasons for failure are human errors in design and execution. This paper will provide practical examples of original designs affected by human error and will assess the impact on structural reliability.


2014 ◽  
Vol 60 (2) ◽  
pp. 195-208
Author(s):  
T. Domański

Abstract The resistance parameters of timber structures decrease with time. It depends on the type of load and timber classes. Strength reduction effects, referred to as creep-rupture effects, due to long term loading at high stress ratio levels are known for many materials. Timber materials are highly affected by this reduction in strength with duration of load. Characteristic values of load duration and load duration factors are calibrated by means of using probabilistic methods. Three damage accumulation models are considered, that is Gerhard [1] model, Barret, Foschi[2] and Foshi Yao [3] models. The reliability is estimated by means of using representative short- and long-term limit states. Time variant reliability aspects are taken into account using a simple representative limit state with time variant strength and simulation of whole life time load processes. The parameters in these models are fitted by the Maximum Likelihood Methods using the data relevant for Polish structural timber. Based on Polish snow data over 45 years from mountain zone in: Zakopane – Tatra, Świeradów – Karkonosze, Lesko – Bieszczady, the snow load process parameters have been estimated. The reliability is evaluated using representative short – and long –term limit states, load duration factor kmod is obtained using the probabilistic model.


Sign in / Sign up

Export Citation Format

Share Document