A Study on the Correlation Between Dynamic Transmission Error and Dynamic Tooth Loads in Spur and Helical Gears

2016 ◽  
Vol 139 (1) ◽  
Author(s):  
N. Sainte-Marie ◽  
P. Velex ◽  
G. Roulois ◽  
J. Caillet

A three-dimensional (3D) dynamic gear model is presented which combines classic shaft, lumped parameter, and specific two-node gear elements. The mesh excitation model is based on transmission errors (TEs), and its mathematical grounding is briefly described. The validity of the proposed methodology is assessed for both spur and helical gears by comparison with experimental evidence. The model is then employed to analyze the relationship between dynamic transmission errors (DTE) and dynamic tooth loads (DF) or root stresses. It is shown that a linear dependency can be found as long as the system behavior is dominated by shaft torsion but that this linear relationship tends to disappear when bending cannot be neglected.

Author(s):  
Nina Sainte-Marie ◽  
Philippe Velex ◽  
Guillaume Roulois ◽  
Franck Marrot

A three-dimensional dynamic model is presented to simulate the dynamic behavior of single stage gears by using a combination of classic shaft, lumped parameter and specific 2-node gear elements. The mesh excitation formulation is based on transmission errors whose mathematical grounding is briefly described. The validity of the proposed methodology is assessed by comparison with experimental evidence from a test rig. The model is then employed to analyze the relationship between dynamic transmission errors and dynamic tooth loads or root stresses. It is shown that a linear dependency can be observed between the time variations of dynamic transmission error and tooth loading as long as the system can be assimilated to a torsional system but that this linear relationship tends to disappear when the influence of bending cannot be neglected.


1995 ◽  
Vol 117 (2A) ◽  
pp. 254-261 ◽  
Author(s):  
F. L. Litvin ◽  
N. X. Chen ◽  
J. Lu ◽  
R. F. Handschuh

An approach for the design and generation of low-noise helical gears with localized bearing contact is proposed. The approach is applied to double circular arc helical gears and modified involute helical gears. The reduction of noise and vibration is achieved by application of a predesigned parabolic function of transmission errors that is able to absorb a discontinuous linear function of transmission errors caused by misalignment. The localization of the bearing contact is achieved by the mismatch of pinion-gear tooth surfaces. Computerized simulation of meshing and contact of the designed gears demonstrated that the proposed approach will produce a pair of gears that has a parabolic transmission error function even when misalignment is present. Numerical examples for illustration of the developed approach are given.


2000 ◽  
Vol 122 (2) ◽  
pp. 213-218 ◽  
Author(s):  
Hung-Ming Tai ◽  
Cheng-Kuo Sung

This paper investigates the effects of belt flexural rigidity and belt tension on transmission error of a carriage-driving system. The beam model associated with both the clamped and moving boundary conditions at two ends is utilized to derive the governing equation of the belt. The belt flexural rigidity is obtained and verified by an experimental technique. In addition, a numerical method is proposed to determine the belt profile, transmission error and transmission stiffness. Results show that transmission error of a carriage-driving system increases when the carriage moves away from the driving pulley due to finite belt flexural rigidity. According to the analyses, application of appropriate tension on the belt can significantly reduce the error. Furthermore, the transmission stiffness for representing the entire rigidity between the carriage and pulley is investigated based on the proposed beam model. A three-dimensional plot that indicates the relationship among the transmission stiffness, belt tension and the position of the carriage is obtained. [S1050-0472(00)01102-8]


Author(s):  
Hung-Ming Tai ◽  
Cheng-Kuo Sung

Abstract This paper investigates the effects of belt flexural rigidity and belt tension on transmission error of a carriage-driving system. The beam model associated with both the clamped and moving boundary conditions at two ends is utilized to derive the governing equation of the belt. The belt flexural rigidity is obtained and verified by an experimental technique. In addition, a numerical method is proposed to determine the belt profile, transmission error and transmission stiffness. Results show that transmission error of a carriage-driving system increases when the carriage moves away from the driving pulley due to finite belt flexural rigidity. According to the analyses, application of appropriate tension on the belt can significantly reduce the error. Furthermore, the transmission stiffness for representing the entire rigidity between the carriage and pulley is investigated based on the proposed beam model. A three-dimensional plot that indicates the relationship among the transmission stiffness, belt tension and the position of the carriage is obtained.


Author(s):  
Sameer Gudal ◽  
Yong Pan ◽  
Shuh-Yuan Liou ◽  
V. Sundararajan ◽  
Daniel Antonetti ◽  
...  

Noise in vehicular automatic transmissions is a complex phenomenon involving several interacting factors. One of the contributing factors to noise for a single pair of meshing gears has been shown to be the transmission error. The transmission error (TE) is defined in terms of deviation of the speed ratio from the ideal speed ratio. It has since been hypothesized that the composite transmission error in a planetary system would be the key contributor to noise in automatic transmissions. This composite error would have to include the contributions from individual meshes and account for the configuration of the transmission system. This paper describes a design system that enables engineers to predict and study effects of parameter variation on the composite transmission error. The designer first specifies the configuration of the transmission using canonical graphs. The graph contains the elements such as gears, clutches and brakes of the transmission system as its nodes and the relationship among them for the edges. The design system uses the graph to solve for the speeds and torques. The transmission errors for the individual meshes are computed and then combined into the composite transmission error using a simple average.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
D. Ghribi ◽  
J. Bruyère ◽  
Ph. Velex ◽  
M. Octrue ◽  
M. Haddar

This paper addresses the definition of robust profile modifications in spur and helical gears. An original methodology is introduced which relies on closed-form analytical results on transmission errors combined with a gradient descent algorithm and a Gauss quadrature (GQ) based full factorial method. The results compare very well with those delivered by using classic Monte Carlo simulations with a considerable gain in computational time. The influence of the probability distribution law for the design parameters (depth and extent of modification) is analyzed along with the contribution of gear quality grade and load variation. Some optimum robust linear relief is presented which minimizes transmission error fluctuations over a broad range of loads even in the presence of significant geometrical tolerances.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
P. Velex ◽  
J. Bruyère ◽  
D. R. Houser

Some theoretical developments are presented, which lead to approximate analytical results on quasi-static transmission errors valid for low and high contact ratio spur and helical gears. Based on a multidegree-of-freedom gear model, a unique scalar equation for transmission error is established. The role of profile relief is analyzed by using Fourier series and it is shown that transmission error fluctuations depend on a very limited number of parameters representative of gear geometry and profile relief definition. An original direct solution to the optimum relief minimizing transmission error fluctuations is presented, which is believed to be helpful for designers. The analytical results compare well with the numerical results provided by a variety of models and it is demonstrated that some general laws of evolution for transmission error fluctuations versus profile modifications can be established for spur and helical gears.


Author(s):  
Christopher G. Cooley ◽  
Robert G. Parker ◽  
Sandeep M. Vijayakar

A finite element formulation for the dynamic response of gear pairs is proposed. Following an established approach in lumped parameter gear dynamic models, the static transmission error is used as the excitation in a frequency domain solution of the finite element vibration model. The nonlinear finite element/contact mechanics formulation provides superior calculation of static transmission error and average mesh stiffness that is used in the dynamic simulation. The frequency domain finite element calculation of dynamic response correlates to numerically integrated (time domain) finite element dynamic results and previously published experimental results. Simulation time with the proposed formulation is two orders of magnitude lower than numerically integrated dynamic results. This formulation admits system level dynamic gearbox response, which may include multiple gear meshes, flexible shafts, rolling element bearings, and housing structures.


Author(s):  
Chan Il Park

Transmission error is typically understood to act as the primary source of gearbox noise and vibration. This paper investigates the effect of sliding friction on the transmission error and tooth load of spur gears. To do so, the kinematic relation for the sliding mechanism of spur gears and mesh stiffness was calculated. The relationship between tooth load, tooth errors and mesh compliance as well as the moment balance equation in consideration of the teeth friction force are derived. Transmission error, tooth load, and the teeth friction force of gears with/without modification were investigated. As the results, friction caused an increase in tooth load and transmission error in gear approach and a decrease in tooth load and transmission error in gear recess.


Author(s):  
Armin Schnider

This chapter summarizes current interpretations of all forms of confabulations discussed in the book and reviews the relationship between the four forms of memory-related confabulations. Experimental investigation has confirmed the dissociation between various types of false memories and considerably advanced the understanding of the mechanisms of some forms of confabulation, in particular behaviourally spontaneous confabulation and false statements in anosognosia. Overall, experimental evidence is scarce; many models have no controlled experimental basis or extend their proposed range of application well beyond the empirical evidence. The chapter concludes with a call for heightened respect of basic scientific standards in the research on confabulation.


Sign in / Sign up

Export Citation Format

Share Document