Novel Tribological Behavior of Hybrid MWCNTs/MLNGPs as an Additive on Lithium Grease

2017 ◽  
Vol 139 (4) ◽  
Author(s):  
M. E. Ashour ◽  
T. A. Osman ◽  
A. Khattab ◽  
A. B. Elshalakny

The goal of this paper is to investigate tribological characteristics of nanographene platelets and hybridized nanocomposite of multiwalled carbon nanotubes (MWCNTs)/multilayer nanographene platelets (MLNGPs)/lithium based-grease. Characterization is done through high resolution transmission electron microscopy (TEM) and X-ray diffraction. While grease properties were tested using Falex four-ball testing machine. Scanning electron microscopy (SEM) and energy dispersive X-ray diffraction (EDX) were utilized to characterize the lubrication mechanism and the worn surface. The results showed that 1% of MLNGPs is the optimum concentration. Wear scar diameter (WSD) was reduced by 66%, friction coefficient was reduced by 91%, while maximum nonseizer load was increased by 90 kg over ordinary lithium grease. Hybrid MWCNTs\MLNGPs were studied, and the optimum ratio of MLNGPs to MWCNTs was found to be 4:1.

2018 ◽  
Vol 42 (19) ◽  
pp. 16307-16328 ◽  
Author(s):  
Mohammad Hassan Omidi ◽  
Mohammad Hossein Ahmadi Azqhandi ◽  
Bahram Ghalami-Choobar

In this study, branched polyethylenimine (PEI) loaded on magnetic multiwalled carbon nanotubes (MWCNT/CoFe2O4) was synthesized and characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) analysis and Fourier transform infrared spectroscopy (FTIR).


2020 ◽  
pp. 096739112093524
Author(s):  
Anupama Mogha ◽  
Anupama Kaushik

This research presents an analysis of castor oil-based polymer nanocomposites that can be used for numerous commercial applications. Due to the versatile chemical structure of castor oil, it can replace the petrochemical products and hence can be optimized as nontoxic bioresource for the production of nanocomposites with the incorporation of nanofillers in small quantities. It can be directly used as polyol resource without any chemical alteration for synthesis of polyurethane (PU) nanocomposites. The prepared PU nanocomposites were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, wide angle X-ray diffraction, transmission electron microscopy (TEM), and mechanical properties. The compositional and structural studies indicate the formation of PU linkages and well dispersion of clay and multiwalled carbon nanotubes between the polymer–nanofiller phase, as shown by the morphological analysis using TEM. Also, there is an increase in the tensile strength and Young’s modulus values with the increase in the filler content.


2021 ◽  
pp. 009524432110470
Author(s):  
Jae Ik Kim ◽  
Jung W Kim ◽  
Sung H Ryu

Effect of exfoliation of MoS2 on the wear characteristics of the MoS2/PA-6,6 composite is investigated. Exfoliation of MoS2 is identified using X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. Wear loss of composites is done using Taber abrasion tester with CS-17 abrasive wheel and atomic force microscope is used to characterize the worn surface. It is observed that wear loss of MoS2/PA-6,6 composite is strongly affected by content and exfoliation of MoS2. Wear loss of composites is decreased by the addition of MoS2 irrespective of exfoliation and it is improved with increasing filler content. Exfoliated MoS2/PA-6,6 composites show improved wear characteristic, that is, reduced wear loss, compared to the pristine MoS2/PA-6,6 composite. Addition of MoS2 induces less plastic deformation of the worn surface of composites, and it is more distinct for exfoliated MoS2.


2020 ◽  
Vol 10 (15) ◽  
pp. 5394
Author(s):  
Duo Dong ◽  
Li Liu ◽  
Dongdong Zhu ◽  
Yang Liu ◽  
Ye Wang ◽  
...  

In this work, the Ti-48Al-2Cr alloy, solidified under different pressures and temperatures, was investigated in detail. The effect of high pressure on the microstructure and nanohardness of the Ti-48Al-2Cr alloy was investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and a nanoindenter XP testing machine. The results showed that the B2 phase disappeared after high-pressure solidification. Compared with ambient pressure solidification, high pressure led to the increase of (α2 + γ) lamellar structure and the decrease of γ phase. The nanohardness of the lamellar structure was discussed based on the microstructure observation. When solidified at 5 GPa/1873 K, the hardness rose to 5.54 GPa, an increase of 60.5% compared with that solidified at ambient pressure. However, the increased holding temperature of 1973 K made the dislocation density in the lamellar structures greatly decrease, and reduced the structure’s hardness to 4.48 GPa.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


2002 ◽  
Vol 716 ◽  
Author(s):  
Seok Woo Hong ◽  
Yong Sun Lee ◽  
Ki-Chul Park ◽  
Jong-Wan Park

AbstractThe effect of microstructure of dc magnetron sputtered TiN and TaN diffusion barriers on the palladium activation for autocatalytic electroless copper deposition has been investigated by using X-ray diffraction, sheet resistance measurement, field emission scanning electron microscopy (FE-SEM) and plan view transmission electron microscopy (TEM). The density of palladium nuclei on TaN diffusion barrier increases as the grain size of TaN films decreases, which was caused by increasing nitrogen content in TaN films. Plan view TEM results of TiN and TaN diffusiton barriers showed that palladium nuclei formed mainly on the grain boundaries of the diffusion barriers.


2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 611
Author(s):  
Celia Marcos ◽  
María de Uribe-Zorita ◽  
Pedro Álvarez-Lloret ◽  
Alaa Adawy ◽  
Patricia Fernández ◽  
...  

Chert samples from different coastal and inland outcrops in the Eastern Asturias (Spain) were mineralogically investigated for the first time for archaeological purposes. X-ray diffraction, X-ray fluorescence, transmission electron microscopy, infrared and Raman spectroscopy and total organic carbon techniques were used. The low content of moganite, since its detection by X-ray diffraction is practically imperceptible, and the crystallite size (over 1000 Å) of the quartz in these cherts would be indicative of its maturity and could potentially be used for dating chert-tools recovered from archaeological sites. Also, this information can constitute essential data to differentiate the cherts and compare them with those used in archaeological tools. However, neither composition nor crystallite size would allow distinguishing between coastal and inland chert outcrops belonging to the same geological formations.


2021 ◽  
Vol 19 (1) ◽  
pp. 745-754
Author(s):  
Khoirina Dwi Nugrahaningtyas ◽  
Eddy Heraldy ◽  
Rachmadani ◽  
Yuniawan Hidayat ◽  
Indriana Kartini

Abstract The properties of three types of CoMo/USY catalysts with different synthesized methods have been studied. The sequential and co-impregnation methods followed by activation using calcination and reduction process have been conducted. The properties of the catalysts were examined using Fourier-transform-infrared (FTIR) spectroscopy, X-ray diffraction (XRD) with refinement, and surface area analyzer (SAA). The FTIR spectrum study revealed the enhanced intensity of its Bronsted acid site, and the XRD diffractogram pattern verified the composition of pure metals, oxides, and alloys in the catalyst. The SAA demonstrated the mesoporous features of the catalyst. Scanning electron microscopy showed an irregular particle morphology. Additional analysis using the transmission electron microscopy indicated that the metal has successfully impregnated without damaging the USY structure.


Sign in / Sign up

Export Citation Format

Share Document