Experimental Study of Drilling Fluid's Filtration and Mud Cake Evolution in Sandstone Formations

2017 ◽  
Vol 139 (2) ◽  
Author(s):  
C. P. Ezeakacha ◽  
S. Salehi ◽  
A. Hayatdavoudi

In real time drilling, the complexity of drilling fluid filtration is majorly attributed to changing mud rheology, formation permeability, mud particle size distribution (PSD), filter cake plastering effects, and geochemical reaction of particles at geothermal conditions. This paper focuses on quantifying the major effects as well as revealing their contribution toward effective wellbore stabilization in sandstone formations. We conducted an extensive experimental and analytical study on this subject at different levels. First, we used field application and the results as guides for our experiments. We have considered both oil-based mud and water-based mud. Next, we optimized the mud particle size distribution (PSD) by carefully varying the type, size, and concentration of wellbore strengthening material (WSM). Laboratory high pressure high temperature fluid loss tests were carried out on Michigan and Bandera Brown sandstones. The results from these tests identify the formation heterogeneity and permeability in successful wellbore stabilization. Filter cake permeability calculations, using the analytical model for linear systems, were consistent with filtration rates, and the expected trend of permeability declines with time. Finally, we investigated the evolution of internal filter cake and plastering mechanism, using scanning electron microscopic (SEM) analysis. The test results revealed a significant difference in the formation permeability impairment for the optimal mud PSD and WSM blend.

2020 ◽  
Vol 10 (5) ◽  
pp. 657-662
Author(s):  
Gang Wang ◽  
Honghai Fan ◽  
Guancheng Jiang ◽  
Wanjun Li ◽  
Yu Ye ◽  
...  

In this paper, the cross-linked micro-gel polymer between acrylamide (AM) and N, N-Methylenebisacrylamide (MBA) was synthesized by dispersion polymerization. The initiator and crosslinking agent concentration were used to control the particle size of micro-gel polymer. The filtration property and mechanism of micro-gel were investigated comprehensively. The characteristics of micro-gel were checked by means of Fourier transform infrared spectroscopy, thermogravimetry, transmission electron microscopy, and particle size distribution, respectively. The results indicated that the cross-linked micro-gel polymer exhibited several outstanding merits, such as thermal stability (up to 200 °C), filtration control and rheological property. Microstructure analysis and particle size distribution examinations showed that the scale of micro-gel polymer was micro, which is in accord with design. Rheological tests demonstrated that the nonlinear structure of micro-gel polymer showed less impact on the apparent viscosity. The anti-high temperature property of micro-gel polymer was better than poly anioniccellulose (PAC) and asphalt widely applied in drilling fluid for anti-high temperature fluid-loss additive. As a result, the cross-linked micro-gel polymer had great potential to be applied in high temperature water-based mud.


2022 ◽  
pp. 1-15
Author(s):  
Lu Lee ◽  
Arash Dahi Taleghani

Summary Lost circulation materials (LCMs) are essential to combat fluid loss while drilling and may put the whole operation at risk if a proper LCM design is not used. The focus of this research is understanding the function of LCMs in sealing fractures to reduce fluid loss. One important consideration in the success of fracture sealing is the particle-size distribution (PSD) of LCMs. Various studies have suggested different guidelines for obtaining the best size distribution of LCMs for effective fracture sealing based on limited laboratory experiments or field observations. Hence, there is a need for sophisticated numerical methods to improve the LCM design by providing some predictive capabilities. In this study, computational fluid dynamics (CFD) and discrete element methods (DEM) numerical simulations are coupled to investigate the influence of PSD of granular LCMs on fracture sealing. Dimensionless variables were introduced to compare cases with different PSDs. We validated the CFD-DEM model in reproducing specific laboratory observations of fracture-sealing experiments within the model boundary parameters. Our simulations suggested that a bimodally distributed blend would be the most effective design in comparison to other PSDs tested here.


REAKTOR ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 145-151
Author(s):  
Kasmadi Kasmadi ◽  
Budi Nugroho ◽  
Atang Sutandi ◽  
Syaiful Anwar

Compound fertilizer which combining organic-inorganic materials need to be developed to improve the effectivness of fertilizers in the soil. Filter cake as a material has highly potential to be used as a filler in physical process granulation of compound fertilizer. In this study, the particle size distribution and granule crushing strength properties were tested using 15-15-15 + 5S fertilizer compound formula, which are varied in the filler composition and K sources. Potassium sources consisted of 2 (two) types of fertilizers i.e KCl and K2SO4. Filler composition as a binder in fertilizer granulation consists of 5 combination filter cake and clay ratios (60:40, 70:30, 80:20, 90:10 and 100:0). Granulation carried out by the granulation method using pan granulator of 2 kg/batch capacity, 23 rpm rotation speed and 50o pan slope. The results of the research showed that statistically the combination of filter cake and clay 70:30 had a size distribution and hardness of granules not significantly different from standard fertilizer (100% clay). Keywords: crushing strength; filler; filter cake; granulation; size distribution


1986 ◽  
Vol 106 (3) ◽  
pp. 527-535 ◽  
Author(s):  
G. D. Towner

SummaryBatcombe series soils readily break down to good tilths, Beccles series soils form cloddy seed beds that are resistant to weathering, and Stackyard series soils form unstable tilths that readily break down. The soils differ in their particle-size distribution. The proposition that such differences contributed to the differences in field behaviour was examined by forming artificial soils, each of which was made up from particles of one of the soils, but redistributed with respect to size in the proportion in which they occurred in one of the other soils.As a measure of the relevant physical properties, breaking strengths and bulk densities of cylindrical ‘clods’ moulded from the artificial soils were determined. To aid interpretation of the observed soil properties, similar measurements were made on individual fractions, on various other mixtures and on the parent soils.The breaking strengths of the soils made up to a given particle-size distribution from particles from the different parent soils were reasonably close to each other, with those for the Beccles distribution being more variable. There was a significant difference between the two. The strength of the reconstituted Batcombe soil was markedly greater than that of its parent soil, whereas that for Beccles soil was markedly less. There was little difference for the Stackyard soil.The bulk densities of saturated soils reconstituted from all nine fractions could be estimated reasonably accurately from the properties of the separate components. The structure of each of these soils in the air-dry state was inferred from comparisons between measured and calculated bulk densities. The breaking strengths of air-dry reconstituted soils were estimated from the properties of the separate components, and agreed reasonably well with the measured values for soils in which the clay and fine silt fractions predominated.Whereas it was generally possible to predict various physical properties of the reconstituted soils from those of the separate fractions, it was not possible to extrapolate the results to explain field behaviour.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1013
Author(s):  
Sirong Xian ◽  
Shijun Chen ◽  
Yubo Lian ◽  
Weichao Du ◽  
Zhifei Song ◽  
...  

This study aimed to evaluate the inhibitory effect of a series of ammonium adipate solutions (AASs) by using the linear expansion test, thermogravimetric analysis (TGA), and particle size distribution analysis, and to examine the underlying inhibitory mechanism. A series of AASs was prepared from adipic acid and amines as small-molecule inhibitors of oil shale rock swelling. They were then evaluated by the bentonite linear expansion test. The best one, namely, AAS-8 (synthesized with adipic acid and tetraethylenepentamine in a ratio of acid group to amine group of 1:2), was evaluated in a water-based drilling fluid. The linear expansion test showed that the linear expansion rate of AAS-8 was the lowest (59.61%) when the concentration was 0.1%. The evaluation of the drilling fluid revealed that AAS-8 had a strong inhibitory effect on the swelling of hydrated bentonite particles in the water-based drilling fluid and was compatible with carboxymethyl cellulose (CMC) and modified starch. The inhibition mechanism of AAS-8 was investigated using TGA and particle size distribution analysis, which demonstrated that AAS-8 might enter the clay layer and bind the clay sheets together by electrostatic adsorption and hydrogen bonding.


2015 ◽  
Vol 35 (7) ◽  
pp. 627-635 ◽  
Author(s):  
Zhengguo Zhao ◽  
Xiaolin Pu ◽  
Luo Xiao ◽  
Gui Wang ◽  
Junlin Su ◽  
...  

Abstract N,N-dimethylacrylamide (DMAA), 2-acrylamido-2-methyl-1-propyl (AMPS), dimethyl diallyl ammonium chloride (DMDAAC) and N-vinylpyrrolidone (NVP) monomers were copolymerized to synthesize a zwitterionic copolymer filtrate reducer. The results of Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) indicated that the molecular structure and chemical compositions of the quadripolymer matched with the design, and the result of the differential scanning calorimetry (DSC)-thermogravimetric analysis (TGA) showed that the polymer had good thermal stability. The effects of the quadripolymer on the properties and salt tolerance of drilling fluids were investigated. The environmental scanning electron microscope (ESEM) was used to observe the microstructure of the DMAA/AMPS/DMDAAC/NVP quadripolymer-bentonite system and filter cake of the drilling fluid added the copolymer. Results showed that a one space grid structure was formed by the molecular film with a hydrophobic association effect and electrostatic interaction between the groups in the positive and negative charges of the quadripolymer. It adsorbed and coated clay particles, and kept the particles distributing multilevels which contributed to forming a compact filter cake to reduce fluid loss. The spatial structure of the quadripolymer in drilling fluid could be destroyed partly by high temperatures, sodium and calcium, but the polymer still had a good effect on reducing fluid filtration.


Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2579
Author(s):  
Evelyn Mete ◽  
Jillian Haszard ◽  
Tracy Perry ◽  
Indrawati Oey ◽  
Jim Mann ◽  
...  

Wholegrain flour produced by roller-milling is predominantly comprised of fine particles, while stoneground flour tends to have a comparatively smaller proportion of fine particles. Differences in flour particle size distribution can affect postprandial glycaemia in people with type 2 diabetes and postprandial insulinaemia in people with and without type 2 diabetes. No prior studies have investigated the effect of wholegrain flour particle size distribution on glycaemic or insulinaemic response among people with impaired glucose tolerance or risk factors for type 2 diabetes. In a randomised crossover study, we tested the 180-min acute glycaemic and insulinaemic responses to three wholegrain breads differing in flour particle size and milling method: (1) fine roller-milled flour, (2) fine stoneground flour, and (3) coarse stoneground flour. Participants (n = 23) were males and females with risk factors for type 2 diabetes (age 55–75 y, BMI >28 kg/m2, completing less than 150 min moderate to vigorous intensity activity per week). Each test meal provided 50 g available carbohydrate, and test foods were matched for energy and macronutrients. There was no significant difference in blood glucose iAUC (incremental area under the curve) between the coarse stoneground flour bread and the fine stoneground flour bread (mean difference −20.8 (95% CI: −51.5, 10.0) mmol·min/L) and between the coarse stoneground flour bread and the fine roller-milled flour bread (mean difference −23.3 (95% CI: −57.6, 11.0) mmol·min/L). The mean difference in insulin iAUC for fine stoneground flour bread compared with the fine roller-milled flour bread was −6.9% (95% CI: −20.5%, 9.2%) and compared with the coarse stoneground flour bread was 9.9% (95% CI: −2.6%, 23.9%). There was no evidence of an effect of flour particle size on postprandial glycaemia and insulinaemia among older people with risk factors for type 2 diabetes, most of whom were normoglycaemic.


2021 ◽  
pp. 137-144
Author(s):  
Robert Mugabi

Introduction: Particle size is one of the main variables that influence coffee brewing process and also most obvious to the consumers. The aim of this study was to evaluate the effect of different particle sizes on the color of ground coffee. Methods: A laser diffraction analyzer was used to determine the particle size distribution of the 14 dry ground coffee samples. The particle size distribution of the roasted ground coffee samples that underwent grinding at different time periods was based on volume distribution. Color measurements of all coffee samples were made using a portable CR-400 tristimulus colorimeter and Spectra-Match software, set to L*, a*, b* mode. Color measurements were recorded for two replicates of each sample. Results: Coffee samples ground for short times of 30s, 20s and 10s, were observed to have coarser particles than those that underwent longer grinding times. The 20s and 30s grinding times did not exhibit any significant differences for the D50 and D90 particle size distributions. There was no significant difference in D50 and D90 values for Colombian 1.3, Leyenda and Tarrazu brands. It was observed that lightness (L*) as well as a* and b* were highly significantly different between the different coffee samples with P < 0.0001. The coffee samples that underwent grinding for 60s had the highest L*, a* and b* values of 30.72, +1.31 and +1.39 respectively. Colombian 1.3 coffee brand had the lowest L* and a* values of 29.8 and +0.67 respectively, with brand 1820a having the lowest b* value of +0.39. Conclusion: The results of this study show that there was no significant effect of particle size distribution of coffee samples on color of the ground coffee particles. L*, a* and b* values decreased during roasting, due to the darkening of the beans resulting from sugar caramelization and Maillard reactions.


2017 ◽  
Vol 140 (5) ◽  
Author(s):  
Jimoh K. Adewole ◽  
Musa O. Najimu

This study investigates the effect of using date seed-based additive on the performance of water-based drilling fluids (WBDFs). Specifically, the effects of date pit (DP) fat content, particle size, and DP loading on the drilling fluids density, rheological properties, filtration properties, and thermal stability were investigated. The results showed that dispersion of particles less than 75 μm DP into the WBDFs enhanced the rheological as well as fluid loss control properties. Optimum fluid loss and filter cake thickness can be achieved by addition of 15–20 wt % DP loading to drilling fluid formulation.


Sign in / Sign up

Export Citation Format

Share Document