Full-Scale Fairing Qualification Tests

2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Yiannis Constantinides ◽  
Stergios Liapis ◽  
Don Spencer ◽  
Mohammed Islam ◽  
Kjetil Skaugset ◽  
...  

Production risers as well as drilling risers are often exposed to ocean currents. Vortex-induced vibrations (VIVs) have been observed in the field and can cause fatigue failure and excessive drag on the riser. In order to suppress VIV, fairings are often used. This paper presents qualification tests for two types of fairings: the short-crab claw (SCC) fairings and the AIMS dual flow splitter (ADFS) fairings. The short-crab claw fairing design is a novel design patented by the Norwegian deepwater project (NDP). As will be detailed in this paper, both the SCC and ADFS designs offer very low drag, completely suppress VIV, and are effective even when they are in tandem. A model test campaign was undertaken in the 200-m towing tank facility at the ocean, coastal, and river engineering in St. John's, NF, Canada. A rigid pipe with a diameter of 0.3556 m (14 in) was utilized for the experiments. This corresponds to prototype size for a production riser and a 1:3.8 scaled model for a 1.3716 m (54 in) drilling riser. Given that these tests were conducted at prototype scale, they were used to qualify the fairings for field deployment. Both fairings (SCC and ADFS) were very effective in suppressing VIV and reducing drag. The ADFS fairings are most effective for a span to diameter ratio of 1.75. For all fairing geometries, it was found that a small taper increases the fairing effectiveness considerably.

2015 ◽  
Author(s):  
Yiannis Constantinides ◽  
Stergios Liapis ◽  
Don Spencer ◽  
Mohammed Islam ◽  
Kjetil Skaugset ◽  
...  

Production risers as well as drilling risers are often subjected to Vortex-induced vibrations (VIV) when exposed to ocean currents. VIV have been observed in the field and can cause fatigue failure and excessive drag on the riser. In order to suppress VIV and reduce drag, fairings are often used. This paper presents hydrodynamic qualification tests for two types of fairings: the short crab claw (SCC) and a tapered dual fin design. The short crab claw fairing design is a novel design that was developed by the Norwegian Deepwater Programme (NDP). As will be detailed in this paper, the SCC design offers very low drag, completely suppresses VIV and reduces riser interference. In 2012, a model test campaign was undertaken to understand and qualify the hydrodynamic performance of fairings at prototype conditions. The program consisted of testing the three fairing geometries and a strake to understand the stand-alone performance in VIV and the performance in interference. This was accomplished by utilizing a single pipe setup for the standalone test and a two-pipe setup for the interference tests. The paper reports the results of the program and draws conclusions on the hydrodynamic performance of the VIV suppression devices tested. Overall, all VIV suppression devices tested were able to suppress VIV with the SCC fairing being the most effective. In all cases tested, the downstream fairings / strakes were very effective in suppressing VIV in an interference scenario where a fairing was placed upstream. Contrary to the well-documented case of two strakes in tandem, in this case the upstream fairings did not reduce the effectiveness of the downstream fairings/strakes.


2013 ◽  
Vol 12 (3) ◽  
Author(s):  
Iskendar Iskendar ◽  
Andi Jamaludin ◽  
Paulus Indiyono

This paper describes hydrodynamic model tests of Wing in Surface Effect (WiSE) Craft. These craft  was fitted with  stephull  form in different location on longitudinal flat bottom (stepedhull planning craft) to determine the influences of sticking and porpoising motion performances. These motions are usually occured when the craft start to take-off from water surfaces. The test models with scale of 1 : 7 were comprised of 4 (four) stephull models and 1 (one) non-stephull model  as a comparative study. The hydrodynamic  tests were performed with craft speed of 16 – 32 knots (prototype values) in Towing Tank at UPT. Balai Pengkajian dan Penelitian Hidrodinamika (BPPH), BPPT, Surabaya. The resistance (drag) was measured by dynamo meter and the trim of model (draft changing at fore and aft  of model due to model speed) was measured by trim meter. By knowing the value of model trim, the wetted surface area can be determined. Then, the lift forces were calculated based on these measured values. The model test results were presented on tables and curves.  Test results show that models  with step located far away from center of gravity of the WiSE craft tend to porpoising and sticking condition, except if the step location on the below of these center of gravity. While model without step tends to sticking conditions.


Author(s):  
Charles Lefevre ◽  
Yiannis Constantinides ◽  
Jang Whan Kim ◽  
Mike Henneke ◽  
Robert Gordon ◽  
...  

Vortex-Induced Motion (VIM), which occurs as a consequence of exposure to strong current such as Loop Current eddies in the Gulf of Mexico, is one of the critical factors in the design of the mooring and riser systems for deepwater offshore structures such as Spars and multi-column Deep Draft Floaters (DDFs). The VIM response can have a significant impact on the fatigue life of mooring and riser components. In particular, Steel Catenary Risers (SCRs) suspended from the floater can be sensitive to VIM-induced fatigue at their mudline touchdown points. Industry currently relies on scaled model testing to determine VIM for design. However, scaled model tests are limited in their ability to represent VIM for the full scale structure since they are generally not able to represent the full scale Reynolds number and also cannot fully represent waves effects, nonlinear mooring system behavior or sheared and unsteady currents. The use of Computational Fluid Dynamics (CFD) to simulate VIM can more realistically represent the full scale Reynolds number, waves effects, mooring system, and ocean currents than scaled physical model tests. This paper describes a set of VIM CFD simulations for a Spar hard tank with appurtenances and their comparison against a high quality scaled model test. The test data showed considerable sensitivity to heading angle relative to the incident flow as well as to reduced velocity. The simulated VIM-induced sway motion was compared against the model test data for different reduced velocities (Vm) and Spar headings. Agreement between CFD and model test VIM-induced sway motion was within 9% over the full range of Vm and headings. Use of the Improved Delayed Detached Eddy Simulation (IDDES, Shur et al 2008) turbulence model gives the best agreement with the model test measurements. Guidelines are provided for meshing and time step/solver setting selection.


Author(s):  
Fei Duan ◽  
Zhiqiang Hu ◽  
Jin Wang

Wind power has great potential because of its clean and renewable production compared to the traditional power. Most of the present researches for floating wind turbine rely on the hydro-aero-elastic-servo simulation codes and have not been exhaustively validated yet. Thus, model tests are needed and make sense for its high credibility to master the kinetic characters of floating offshore structures. The characters of kinetic responses of the spar-type wind turbine are investigated through model test research technique. This paper describes the methodology for wind/wave model test that carried out at Deepwater Offshore Basin in Shanghai Jiao Tong University at a scale of 1:50. A Spar-type floater was selected to support the wind turbine in this test and the model blade was geometrically scaled down from the original NREL 5 MW reference wind turbine blade. The detail of the scaled model of wind turbine and the floating supporter, the test set-up configuration, the mooring system, the high-quality wind generator that can create required homogeneous and low turbulence wind, and the instrumentations to capture loads, accelerations and 6 DOF motions are described in detail, respectively. The isolated wind/wave effects and the integrated wind-wave effects on the floating wind turbine are analyzed, according to the test results.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhiyi Jin ◽  
Taiyue Qi ◽  
Xiao Liang ◽  
Bo Lei ◽  
Yangyang Yu ◽  
...  

With the rapid development of the urbanization, many underpasses are designed and constructed in big cities to alleviate the huge traffic pressure. The construction method has been changed from traditional on-site concrete pouring technology to prefabricated assembly technology. However, this change will inevitably bring out some new problems to be studied such as the behaviour of the radial joints. In this study, the numerical simulation model of Moziqiao precast and assemble underpass with large asymmetric cross section was constructed by using the ABAQUS software to study the transient response of the underpass induced by ground surface dynamic load. Based on the similarity theory a 1/10 scaled model test was carried out to study the long-term radial joint behaviour of the underpass considering the prestress loss during the 2000 000 loading cycles. The results transient dynamic response from computed and tested was compared in terms of acceleration. The comparison showed that the transient response accelerations have good consistency. The results of the physical model test were analysed in terms of joint opening, closure, and slipping. The accumulative joint opening was closely correlated to the prestress level, and the joint opening at different prestress levels increased with the loss of the prestress. The joints closure decreased with the increase of the previous accumulative color value. The joint slipping mainly attributed to the slipping of the top segment. Both the opening and slipping of the joints at RJ 1 were larger than that of RJ3 due to the wider span of RJ1, which reflected an asymmetric effect. This study revealed the long-term accumulative behaviour of the radial joints, which convinced us that the long-term accumulative deformation of the joints should be taken into consideration during the design stage for similar projects.


2014 ◽  
Vol 592-594 ◽  
pp. 1210-1219 ◽  
Author(s):  
R. R. More ◽  
Piyush Adhav ◽  
K. Senthilkumar ◽  
M.W. Trikande

Amphibious design of combat vehicle has become a challenging task in the context of increase in Gross Vehicle weight (GVW) of present generation combat vehicles due to demand for high protection levels and higher capacity engine and transmission, incorporation of multiple weapon systems, increased ammunition storage and larger addition of electrical and electronic items. Development of combat vehicles is complex and very expensive, and normally limited with less number of prototypes. The scale modeling and CFD analysis offers a viable solution to accomplish the amphibian design of a combat vehicle with adequate confidence before manufacturing the actual prototype. In the present work, an approach involving experimental towing test using scaled model and CFD simulation has been used to carry out the amphibious design of an 8X8, wheeled, combat vehicle with GVW of 22 ton. In this work, a 1/5thscaled model of the vehicle was manufactured and tested in the towing tank at different test speeds for drag and stability analysis. CFD analysis was carried out on the full scale model to gain adequate details about the dynamics of vehicle in the water in addition to drag estimation. Good correlation has been found in drag values and the flow patterns obtained from towing tank tests and CFD simulations.


Author(s):  
Celso K. Morooka ◽  
Raphael I. Tsukada ◽  
Sergio da Silva ◽  
Ricardo Franciss ◽  
Cyntia G. C. Matt

The objective of the present work is the study of the dynamic behavior of steel catenary risers (SCRs), focusing on the contribution of vortex-induced vibration (VIV), through model test in a towing tank. Nowadays, a great deal of effort is being spent in order to better understand VIV’s contribution in the dynamics of riser structures through experiments, analytical analysis and numerical predictions. In the present work, the design of a SCR model test, along with its setup in a towing tank, will be described in detail and discussions of main results from the experiments will be presented. The experiment has been conducted under several simulated environmental condition combinations, varying the towing speed, riser top forced oscillation amplitudes, waves amplitudes and periods. Very promising results have been observed from the experiment. Riser oscillations due to high harmonics of vortex shedding were observed. Analysis of the experimental results, coupled with the support of numerical tools, showed the influence of the phenomena of traveling waves in the cross-flow response as is reported from the literature.


2006 ◽  
Vol 72 (724) ◽  
pp. 3899-3904 ◽  
Author(s):  
Hiroyuki KONO ◽  
Yoshihiro SUDA ◽  
Masahiro YAMAGUCHI ◽  
Katsuaki TAKASAKI ◽  
Youhei HIRONAKA ◽  
...  
Keyword(s):  

Author(s):  
Mehernosh Irani ◽  
Lyle Finn

The state-of-the art in model testing for Vortex Induced Vibrations (VIV) of Spars is presented. Important issues related to Spar VIV model testing are highlighted. The parameters that need to be modeled including hull geometry, strake configuration, mass and mooring properties and, considerations of test set-up and instrumentation are discussed. Results are presented from model tests of an as-built Spar deployed in the Gulf of Mexico. It is shown that the model test results compare well with the VIV responses measured in the field.


Sign in / Sign up

Export Citation Format

Share Document