Evaluation and Life Extension of Asphalt Pavements Using Rejuvenators and Noncollinear Ultrasonic Wave Mixing: A Review

Author(s):  
Megan E. McGovern ◽  
William Buttlar ◽  
Henrique Reis

Except for the relatively small zones within pavements that are subjected to loadings, the primary challenge in asphalt concrete (AC) pavement design and maintenance is to prevent and/or control environmentally induced distresses. Distresses, including block and thermal cracking, and possibly raveling of construction joints, tend to accelerate with time; as a result, it is critical to evaluate the state of crack resistance in asphalt pavement surfaces before and after maintenance treatments. A review of the use of noncollinear wave mixing to evaluate oxidative aging of AC pavements, and the used of rejuvenators in oxidized pavements toward extension of pavement life, is presented. The approach requires no core extraction. Results show that the noncollinear wave mixing can evaluate the state of oxidative aging of AC pavements. Results also indicate that the use of rejuvenators is a successful strategy of pavement maintenance and sustainability.

2021 ◽  
Vol 4 (6) ◽  
Author(s):  
Zecheng Ni ◽  
Shijing Chen ◽  
Yihuan Li ◽  
Hongxi Peng ◽  
Jiawen Liang ◽  
...  

The early asphalt pavement in our country severely reduced the road performance due to various external factors during the use process. According to incomplete statistics, there are more asphalt pavements that need to be renovated and repaired every year in China, and the amount of construction waste such as asphalt concrete and other construction waste reaches 1,000. About ten thousand tons. If such a huge amount of construction waste is not used, it will inevitably cause great pollution to the environment. If it can be reused, not only will it be environmentally friendly and energy-saving, it will also save more than one billion yuan in costs. In view of the above problems, this article conducts related Research and Analysis on the Principle in Plant Cold Recycling for Foamed Bitumen and Mixture Performance to provide reference for future projects.


2011 ◽  
Vol 280 ◽  
pp. 49-53
Author(s):  
Li Ping Qin ◽  
Wei Rong Huang

In this paper, the abilities of recovery and regeneration for aged asphalt of a new type of asphalt pavement maintenance agent are studied. The agent is applied in the construction of test section of Yuhe Road, and the pavement performances before and after the construction are compared. The test indicates that after the maintenance agent is added into aged asphalt, the penetration and ductility are effectively improved, the softening point is lowered. When the penetration depth of agent reaches 6 mm,the texture depth , friction coefficient and antiskid value are improved to some extent ,the water permeability coefficient is reduced, and the appearance of pavement is improved as well,The paper provided reference for the applying curing agent of asphalt pavement to the preventive maintenance system.


Author(s):  
Lev Khazanovich ◽  
Raul Velasquez ◽  
Edouard G. Nesvijski

To select the optimal strategy for treatment of a cracked asphalt pavement, it is important to determine the extent of cracking (partial depth or full depth). This paper presents the results of an explanatory study aimed at examining the applicability of the ultrasonic technology for evaluation of cracks and longitudinal joints in flexible pavements. It was shown that this technology, which has been used successfully for many years for the evaluation of concrete structures, could provide a simple, quick, and objective procedure for evaluation of surface distresses in asphalt concrete pavements. The results of laboratory testing and field testing at the Minnesota Road Research Project test facility demonstrate the potential of this technology.


2014 ◽  
Vol 934 ◽  
pp. 47-52 ◽  
Author(s):  
Audrius Vaitkus ◽  
Viktoras Vorobjovas ◽  
Donatas Čygas ◽  
Algis Pakalnis

In Lithuania, it has always has been an important issue to find durable and cost-effective solutions for paving low-volume roads. The conventional asphalt concrete structures were built using paving grade bitumen with the penetration of 70/100 or 100/150 over the recent 20 years. The performance of those pavements was satisfactory. As an alternative solution, the use of soft asphalt pavements was proposed. This technology is widely used in Nordic countries. But in Lithuania it has never been applied. Research on the designed soft asphalt mixtures was carried out and the trial on-site sections were constructed. The results of laboratory tests and on-site research were positive and promising. Based on that, the technology could be considered as successfully implemented and good quality was achieved.


2009 ◽  
Vol 620-622 ◽  
pp. 181-184 ◽  
Author(s):  
Zheng Chen ◽  
Shao Peng Wu ◽  
Mei Zhu Chen ◽  
Jin Gang Wang

As the development of civil construction, the heat island effect in large cities of China has gradually become a social issue. Pavements, especially asphalt pavements, are considered to be one of the main causes of the heat island effect as they cover wide area of cities. In some regions, the surface of asphalt pavements can even be heated up to more than 70°C by solar irradiation in summer times due to the excellent heat-absorbing property of asphalt concrete. In this paper, a solar heat reflective coating on asphalt pavement was investigated to reduce asphalt pavements temperature and mitigate the heat island effect. A solar heat reflective coating was synthesized with certain component contents of resin, pigments, fillings and additives on the basis of the principles of heat reflection. The surface temperatures of the concrete covered by solar heat reflective coating and the reference were compared. Meanwhile, an accelerated loading test with loaded vehicles was performed for these two asphalt concretes. The influence of the reduction in the surface temperature on the air temperature was simulated. The research results indicate that the solar heat reflective coating can obviously reduce the surface temperature of asphalt concrete for its high light-reflection rate in the infrared and visible wavelength region. Furthermore, the accelerated loading test also suggests that this coating improves the rutting resistance of the asphalt concrete compared to the reference when exposed to the same irradiation strength. Therefore, this solar heat reflective coating on asphalt pavement could be adopted as a countermeasure against the heat island effect.


2020 ◽  
Vol 11 (1) ◽  
pp. 349
Author(s):  
Shuang Chen ◽  
Xuechun Lin ◽  
Chuanfeng Zheng ◽  
Xuedong Guo ◽  
Wuxing Chen

This study mainly uses PFC (particle follow code) to simulate the void characteristics of permeable asphalt mixture, and uses these to simulate the silting process. Then, a tire drop test was used to evaluate the noise reduction performance of permeable asphalt concrete. Finally, a self-made ring rutting test machine was used to simulate the silting process. Through experiments, the following conclusions were obtained: 1. The critical size of the sludge particle size is 0.3 mm–0.6 mm. 2. The quality of the water-permeable asphalt concrete specimens increased by 13% before and after silting, and the porosity of the specimens finally decreased from about 20% to about 8%. The water-permeable function only retained less than 20% of the original, and the water-permeable function was basically lost. 3. By measuring the road noise detection, it was found that the road noise is directly proportional to the degree of blockage of the permeable road. Compared with the original road with a perfect permeable function, the road noise of the completely blocked road increased by about 4 decibels. This study reveals the silting process of permeable asphalt mixture and the key particle size of the silt, which is of great significance for the detection, cleaning and maintenance of permeable asphalt pavements.


2021 ◽  
Vol 300 ◽  
pp. 02014
Author(s):  
Miaomiao Tian ◽  
Xiangyan Wu ◽  
Xiangling Chen ◽  
Xingbing Xiong ◽  
Jianping Yang

There are high mountains and steep roads in Guizhou Province. Affected by the relatively closed environment, high humidity and other factors, the skid resistance and durability of the highway in tunnels were obviously reduced, which affects the normal operation of the asphalt pavement. Based on the pavement maintenance project of the highway in the Yilaga Tunnel in Guizhou Province, a new kind of epoxy surface treatment maintenance technology for asphalt pavement has been introduced in this paper. Through the comparative analysis of friction coefficient, structural depth and other anti-sliding performance before and after construction, the results has shown that the technology can effectively solve the early diseases and significantly improve the anti-sliding performance of the pavement, and assist to reduce the occurrence of traffic accidents.


Author(s):  
Rafiqul A. Tarefder ◽  
Jielin Pan ◽  
Mohammad I. Hossain

An attempt is made to understand the chemical composition, oxidation mechanisms, and property changes of asphalt binders before and after oxidative aging using molecular dynamics (MD) simulations. Unoxidized and oxidized asphalts are subjected to different compressive and tensile stress rates, and moisture contents at room temperature. Results show that density, energy, and viscosity of the oxidized asphalt are higher than the unoxidized asphalt, indicating hardening and rheological property changes of asphalt after oxidation. Both the unoxidized and oxidized asphalts deform more and fail faster with an increase in stress rates, especially under tensile stress. The oxidized asphalt is stronger than the unoxidized asphalt under mechanical stress. Moisture inclusion affects viscosity more by decreasing the viscosity of the oxidized asphalt faster compared to the unoxidized asphalt. The viscosity of the oxidized asphalt is lower than that of the unoxidized asphalt above 5% moisture inclusion. This indicates that oxidized asphalt pavement might be exposed to more moisture-induced damage.


2013 ◽  
Vol 838-841 ◽  
pp. 1203-1215
Author(s):  
Deng Wen Zhou ◽  
Rong Jin Wang

Severe rutting, cracks and moisture damage are presented on conventional semi-rigid base asphalt pavements not long after completed in China. This phenomenon indicates that conventional philosophy on pavement design could not meet more and more frequent and heavy vehicle. With high structural capacity for high traffic volume and heavy loads, the Perpetual Asphalt Pavements (PAPs) solve those problems well. Meanwhile they need minimal or no major structural rehabilitation and/or reconstruction exercises in their life, which ensures low user-delay. Three PAPs, including semi-rigid base asphalt pavement, flexible base asphalt pavement, and combined base asphalt pavement, are put forward for the northeast area in China considering its climate, traffic characteristic. Finite element method is utilized to analyze response of PAPs under heavy loads. Two key factors, i.e. tensile horizontal strains at the bottom of asphalt layers and compressive vertical strains are investigated. Also the capacities of the structures on bearing overloading are estimated. Four types of wheel and axle, including single axle and single tire, single axle and dual tires, dual axles and dual tires, and tri axles and dual tires are adopted in finite element models. The shapes of tire-pavement contact area are either circular or rectangular to simulate standard load or overloading respectively. When rectangular shapes are adopted, the contact area sizes and the distribution of pressure are varied. Conventional asphalt concrete and high modulus asphalt concrete are adopted. Simulations are done. The competences of the three pavement structures on fulfilling long lives are evaluated.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 385
Author(s):  
Marta Vila-Cortavitarte ◽  
Daniel Jato-Espino ◽  
Daniel Castro-Fresno ◽  
Miguel Á. Calzada-Pérez

Fatigue is one of the main forms of deterioration in asphalt mixtures, endangering their service life due to the progressive appearance and expansion of cracks. A sustainable approach to increase the lifetime of asphalt pavement has been found in self-healing technology, especially if boosted with metal by-products due to their economic and environmental interest. Under these circumstances, this research addressed the fatigue behavior of self-healing asphalt mixtures including industrial sand blasting by-products obtained from sieving and aspiration processes. Hence, a uniaxial fatigue test was carried out to determine whether these experimental mixtures can provide a similar response to that of a reference asphalt concrete (AC-16). This analysis was undertaken with the support of descriptive and inferential statistics, whose application proved the absence of significant differences in the fatigue performance of self-healing experimental mixtures with respect to conventional asphalt concrete. These results suggest that designing self-healing mixtures with metal by-products is a sustainable approach to increase the lifetime of asphalt pavements, while contributing to the circular economy through diverse economic and environmental benefits.


Sign in / Sign up

Export Citation Format

Share Document