Evaluation of Top-Down Cracks in Asphalt Pavements by Using a Self-Calibrating Ultrasonic Technique

Author(s):  
Lev Khazanovich ◽  
Raul Velasquez ◽  
Edouard G. Nesvijski

To select the optimal strategy for treatment of a cracked asphalt pavement, it is important to determine the extent of cracking (partial depth or full depth). This paper presents the results of an explanatory study aimed at examining the applicability of the ultrasonic technology for evaluation of cracks and longitudinal joints in flexible pavements. It was shown that this technology, which has been used successfully for many years for the evaluation of concrete structures, could provide a simple, quick, and objective procedure for evaluation of surface distresses in asphalt concrete pavements. The results of laboratory testing and field testing at the Minnesota Road Research Project test facility demonstrate the potential of this technology.

2021 ◽  
Vol 4 (6) ◽  
Author(s):  
Zecheng Ni ◽  
Shijing Chen ◽  
Yihuan Li ◽  
Hongxi Peng ◽  
Jiawen Liang ◽  
...  

The early asphalt pavement in our country severely reduced the road performance due to various external factors during the use process. According to incomplete statistics, there are more asphalt pavements that need to be renovated and repaired every year in China, and the amount of construction waste such as asphalt concrete and other construction waste reaches 1,000. About ten thousand tons. If such a huge amount of construction waste is not used, it will inevitably cause great pollution to the environment. If it can be reused, not only will it be environmentally friendly and energy-saving, it will also save more than one billion yuan in costs. In view of the above problems, this article conducts related Research and Analysis on the Principle in Plant Cold Recycling for Foamed Bitumen and Mixture Performance to provide reference for future projects.


1995 ◽  
Vol 22 (5) ◽  
pp. 849-860 ◽  
Author(s):  
Zhong Qi Yue ◽  
Otto J. Svec

The paper presents the development of a computer program VIEM for the elastic analysis of multilayered elastic pavements under the action of arbitrary tire–pavement contact pressure distributions. The techniques adapted in VIEM primarily involves the use of a two-dimensional numerical integration to integrate point load solutions over the distributed pressure after discretizing the contact area into a finite number of triangular or quadrilateral elements. Values of contact pressure are inputted at the node points of discretized area. Numerical verification of VIEM indicates that numerical solution of high accuracy can be efficiently calculated for the elastic response of multilayered asphalt pavements. As a result, the determination of displacements and stresses (strains) can be achieved using a personal computer. With the use of VIEM, a theoretical investigation is further performed to illustrate the effects of tire–pavement contact pressure distributions on the response of asphalt concrete pavements. An in situ measured tire–pavement contact pressure distribution is utilized in the investigation. The response of asphalt concrete pavements due to the action of this measured contact pressure distribution is examined and compared with that due to the action of a uniform and circular contact pressure distribution by taking into account the influences of moduli and thicknesses of structural layers. The results of this investigation confirm theoretically a general consensus that details of the contact pressure distribution affect stresses and strains near the surface of the pavement, whereas the response in the lower layers depends mainly on the overall load. In particular, the contact pressure distributions have a significant effect on the horizontal tensile strains at the bottom of thin asphalt concrete layer which control the fatigue failure of asphalt pavements. Key words: tire–pavevment interaction, three-dimensional stress analysis, asphalt concrete pavements, numerical integration, multilayered elastic solids, point load solution.


2014 ◽  
Vol 934 ◽  
pp. 47-52 ◽  
Author(s):  
Audrius Vaitkus ◽  
Viktoras Vorobjovas ◽  
Donatas Čygas ◽  
Algis Pakalnis

In Lithuania, it has always has been an important issue to find durable and cost-effective solutions for paving low-volume roads. The conventional asphalt concrete structures were built using paving grade bitumen with the penetration of 70/100 or 100/150 over the recent 20 years. The performance of those pavements was satisfactory. As an alternative solution, the use of soft asphalt pavements was proposed. This technology is widely used in Nordic countries. But in Lithuania it has never been applied. Research on the designed soft asphalt mixtures was carried out and the trial on-site sections were constructed. The results of laboratory tests and on-site research were positive and promising. Based on that, the technology could be considered as successfully implemented and good quality was achieved.


2009 ◽  
Vol 620-622 ◽  
pp. 181-184 ◽  
Author(s):  
Zheng Chen ◽  
Shao Peng Wu ◽  
Mei Zhu Chen ◽  
Jin Gang Wang

As the development of civil construction, the heat island effect in large cities of China has gradually become a social issue. Pavements, especially asphalt pavements, are considered to be one of the main causes of the heat island effect as they cover wide area of cities. In some regions, the surface of asphalt pavements can even be heated up to more than 70°C by solar irradiation in summer times due to the excellent heat-absorbing property of asphalt concrete. In this paper, a solar heat reflective coating on asphalt pavement was investigated to reduce asphalt pavements temperature and mitigate the heat island effect. A solar heat reflective coating was synthesized with certain component contents of resin, pigments, fillings and additives on the basis of the principles of heat reflection. The surface temperatures of the concrete covered by solar heat reflective coating and the reference were compared. Meanwhile, an accelerated loading test with loaded vehicles was performed for these two asphalt concretes. The influence of the reduction in the surface temperature on the air temperature was simulated. The research results indicate that the solar heat reflective coating can obviously reduce the surface temperature of asphalt concrete for its high light-reflection rate in the infrared and visible wavelength region. Furthermore, the accelerated loading test also suggests that this coating improves the rutting resistance of the asphalt concrete compared to the reference when exposed to the same irradiation strength. Therefore, this solar heat reflective coating on asphalt pavement could be adopted as a countermeasure against the heat island effect.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Zhang Junwei ◽  
Li Jinping ◽  
Quan Xiaojuan

The permafrost degradation is the fundamental cause generating embankment diseases and pavement diseases in permafrost region while the permafrost degradation is related with temperature. Based on the field monitoring results of ground temperature along G214 Highway in high temperature permafrost regions, both the ground temperatures in superficial layer and the annual average temperatures under the embankment were discussed, respectively, for concrete pavements and asphalt pavements. The maximum depth of temperature field under the embankment for concrete pavements and asphalt pavements was also studied by using the finite element method. The results of numerical analysis indicate that there were remarkable seasonal differences of the ground temperatures in superficial layer between asphalt pavement and concrete pavement. The maximum influencing depth of temperature field under the permafrost embankment for every pavement was under the depth of 8 m. The thawed cores under both embankments have close relation with the maximum thawed depth, the embankment height, and the service time. The effective measurements will be proposed to keep the thermal stabilities of highway embankment by the results.


2014 ◽  
Vol 9 (4) ◽  
pp. 276-282 ◽  
Author(s):  
Viktors Haritonovs ◽  
Janis Tihonovs

The study investigates use of dolomite sand waste as filler or/and sand material plus blast oxygen furnace steel slag as fine and coarse aggregate for design of high performance asphalt concrete. Both environmental and economic factors contribute to the growing need for the use of these materials in asphalt concrete pavements. This is particularly important for Latvia, where local crushed dolomite and sandstone do not fulfill the requirements for mineral aggregate in high and medium intensity asphalt pavements roads. Annually 100–200 thousand tons of steel slag aggregates are produced in Latvia. However, it has not been used extensively in asphalt pavement despite of its high performance characteristics. Dolomite sand waste, which is a byproduct of crushed dolomite production, is another widely available polydisperse by-product in Latvia. Its quantity has reached a million of tons and is rapidly increasing. This huge quantity of technological waste needs to be recycled with maximum efficiency. Various combinations of steel slag, dolomite sand waste and conventional aggregates were used to develop asphalt concrete AC 11 mixtures. The mix properties tests include resistance to permanent deformations (wheel tracking test, dynamic creep test) and fatigue resistance. Laboratory test results showed that asphalt concrete mixtures containing steel slag and local limestone in coarse portion and dolomite sand waste in sand and filler portions had high resistance to plastic deformations and good resistance to fatigue failure


2006 ◽  
Vol 12 (4) ◽  
pp. 311-317 ◽  
Author(s):  
Alfredas Laurinavičius ◽  
Rolandas Oginskas

The article sets out to explore reasons for the development of shear strains and rutting in asphalt pavement as well as to suggest and describe the main methods for reducing the deformation. The impact of geosynthetic materials is defined through reological characteristics of asphalt: the modulus of elasticity and the viscosity of asphalt. The research has been conducted on the experimental road section in the city of Vilnius. The measurements have been based on the plate‐bearing test. Sustaining the measurements results is defining the dependency of geosynthetics materials on the depth of rutting and the modulus of elasticity of asphalt concrete. The paper also includes regression equations which show the interdependence of the modulus of elasticity of asphalt concrete and the depth of rutting.


Author(s):  
Megan E. McGovern ◽  
William Buttlar ◽  
Henrique Reis

Except for the relatively small zones within pavements that are subjected to loadings, the primary challenge in asphalt concrete (AC) pavement design and maintenance is to prevent and/or control environmentally induced distresses. Distresses, including block and thermal cracking, and possibly raveling of construction joints, tend to accelerate with time; as a result, it is critical to evaluate the state of crack resistance in asphalt pavement surfaces before and after maintenance treatments. A review of the use of noncollinear wave mixing to evaluate oxidative aging of AC pavements, and the used of rejuvenators in oxidized pavements toward extension of pavement life, is presented. The approach requires no core extraction. Results show that the noncollinear wave mixing can evaluate the state of oxidative aging of AC pavements. Results also indicate that the use of rejuvenators is a successful strategy of pavement maintenance and sustainability.


Author(s):  
Vasyl Nagaychuk ◽  
Sergii Illiash ◽  
Tatyana Tereshchenko

Rehabilitation of asphalt concrete layers of road pavements using HIR technologies enables effective elimination of surface defects (rutting, cracking, raveling, bleeding (flushing)) including defects caused by the non-conformity of asphalt concrete to the standard specifications. Due to the economical and ecological advantages, HIR technologies belong to the present-day effective alternative methods of rehabilitation of asphalt concrete pavements. In Ukraine, HIR technologies were first applied on intermediate repair works on an area of the international road I-01 “Kyiv-Chernihiv-Novyye Yarylovichi” in the 2013. Now, HIR technologies have been applied on repair works on numerical objects including areas on such state motor roads as I-01, I-06, N-09, R-10, R-67. The presented paper analyzes the results of monitoring of materials and technologies which was aimed on HIR performance investigation supported by State Road Agency of Ukraine (Ukravtodor) throughout 2014-2018. The results of monitoring of HIR technologies including laboratory evaluation of materials and also field testing of the rehabilitated pavements led to the conclusions fitted by the world-wide experience on implementation of HIR technologies. 1. Being applied to the structurally sound pavements, HIR provides effective elimination of surface defects of flexible pavement to a depth of (50-60) mm including defects caused by the non-conformity of asphalt concrete to the standard specifications. However, HIR is not suitable for existing asphalt pavements which have too much variation in asphalt concrete composition and thickness within the project limits. 2. The efficiency of asphalt pavement rehabilitation using HIR technologies largely depends on precise engineering consideration which determines the efficiency of preparatory (repair) works including some special works such as: – correction of cracks in case of cracking that extends below the depth of hot recycling; – re-compaction of an unbound base layer(s) in case of the insufficient compaction causing “alligatored” network-like cracking of asphalt pavement. 3. Proper technical and working conditions of the rehabilitated pavement during the nominal life cycle could be maintained by overlaying the surface treatment using bituminous emulsion materials or by single-pass overlaying a new hot-mixed asphalt concrete layer. Investigations accomplished during the implementation of HIR technologies allow enhance quality of recycled materials and also promote the entire adaptation of HIR technologies to the Ukrainian standards. Keywords: asphalt pavement rehabilitation, hot in-place recycling, recycled asphalt concrete, field testing, road pavement strength measurement, rutting measurement.


Sign in / Sign up

Export Citation Format

Share Document