Novel Defect Location Method for Pressure Vessel by Using L (0, 2) Mode Guided Wave

2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Shuangmiao Zhai ◽  
Shaoping Zhou ◽  
Shaojie Chen ◽  
Bin Yang ◽  
Yong Li

Pressure vessel plays an increasingly important role in process industries, in which its performance degradation, such as crack and corrosion, may lead to serious accidents and significant economic losses. Guided wave-based method is a cost-effective means for pressure vessel rapid interrogation. In this paper, the method based on direct-wave and fuzzy C-means clustering algorithm (FCM) is proposed to locate defect for pressure vessel. Finite element (FE) simulation is applied to analyze the propagation characteristics of guided waves. The experiment using the method based on direct-wave and FCM has been conducted on the barrel and head with different sensor arrays, respectively. The variation rule of the direct-wave difference with different distance coefficients has been studied. By combining FCM with the direct-wave difference, the defects on barrel and head can be detected accurately. The defect inspection experiment for pressure vessel using ellipse imaging algorithm is conducted as well. The experimental results show that the method based on direct-wave and FCM can locate the defects on barrel and head of the pressure vessel effectively and accurately.

Author(s):  
Shuangmiao Zhai ◽  
Chaofeng Chen ◽  
Gangyi Hu ◽  
Shaoping Zhou

Pressure vessels are normally employed under extreme environments with high temperature and high pressure. Inevitably, the defects like crack and corrosion that easily occur in the equipment and can significantly influence the normal operation. Guided wave-based method is a cost-effective means to measure the utility of pressure vessel. In this paper, finite element (FE) simulation is used to explore the propagation characteristics of circumferential guided waves in pressure vessel. Based on the propagation characteristics, the experiments with different configurations of piezoelectric transducers (PETs), which contain a sparse array and a dense array, have been conducted on pressure vessel respectively. Different imaging methods, including discrete ellipse imaging algorithm and probability damage imaging algorithm have been applied to locate the defect based on the configurations above. Furthermore, a multi-channel ultrasonic guided wave detection system has been set up for pressure vessel inspection. The experimental results show that the sparse array with the discrete ellipse imaging algorithm can locate the defect effectively. The imaging results based on probability damage imaging algorithm show that the dense array presents the better localization result.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Chaojie Hu ◽  
Bin Yang ◽  
Jianjun Yan ◽  
Yanxun Xiang ◽  
Shaoping Zhou ◽  
...  

Abstract This paper investigates the damage localization in a pressure vessel using guided wave-based structural health monitoring (SHM) technology. An online SHM system was developed to automatically select the guided wave propagating path and collect the generated signals during the monitoring process. Deep learning approach was employed to train the convolutional neural network (CNN) model by the guided wave datasets. Two piezo-electric ceramic transducers (PZT) arrays were designed to verify the anti-interference ability and robustness of the CNN model. Results indicate that the CNN model with seven convolution layers, three pooling layers, one fully connected layer, and one Softmax layer could locate the damage with 100% accuracy rate without overfitting. This method has good anti-interference ability in vibration or PZTs failure condition, and the anti-interference ability increases with increasing of PZT numbers. The trained CNN model can locate damage with high accuracy, and it has great potential to be applied in damage localization of pressure vessels.


2020 ◽  
Vol 62 (8) ◽  
pp. 494-497
Author(s):  
Xu Zhang ◽  
Sheng Feng ◽  
Jun Tu ◽  
Xiaochun Song

This work proposes the use of a Halbach magnet structure to enhance the generation efficiency of shear horizontal (SH) guided waves on a plate. SH waves are normally generated using periodic permanent magnet (PPM) electromagnetic acoustic transducers (EMATs). Two PPM configurations are designed using a Halbach magnet array and the enhancements of the static magnetic fields of the two magnet arrays are validated by the finite element method, indicating that these configurations can increase the peak flux density compared with the conventional configuration. Numerical analysis and experimental investigations indicate that a racetrack coil combined with either a rectangular or triangular Halbach magnet array can enhance the amplitude of the SH guided wave by factors of ∼1.2 and ∼1.1, respectively, and that the rectangular array performs better and is more cost effective.


1977 ◽  
Vol 10 (8) ◽  
pp. 297-306 ◽  
Author(s):  
D. M. Hunns

Modern plants and processes can involve the accumulation of unnatural concentrations of hostile substances in high energy situations. The safe storage of the ingredients and products of these processes, the controlled disposal of waste and the successful harnessing of the reaction energies are all problems which tax our technological resources. There is now sufficient evidence from recent years to demonstrate the potential of fault situations to cause vast economic losses in terms of plant damage and loss of production, to cause loss of life and injury to numbers of operators and in some cases to cause the effects of the catastrophe to extend far beyond the bounds of the factory fence. The need to objectively measure and regulate reliability has now long since been clear and has stimulated the growth of a formalised methodology of reliability assessment which finds expression in quantitative terms. This quantitative component of assessment offers an analogue scale of performance estimation. By this means alternative design strategies can be decisively compared and the reliability spectrum of the component-sections (at any chosen hierarchical level) of a system can be derived. Also the reliability performance of a system may be assessed with respect to some quoted target criterion. Such a target criterion may be derived in reference to plant economics, plant safety or both. Thus a definitive means of gauging the adequacy of the reliability of systems is provided which is increasingly of value as the scales of our technological activities grow. The ability to regulate the reliability of plant to satisfy explicitly derived performance requirements clearly places a valuable and reassuring tool in the hands of the designer. Not only does the tool enable the correct level of reliability to be designed into a system (which is itself cost effective) but also provides a sufficient break-down of performance constituents to enable the most cost effective means of achieving this level to be found.


2020 ◽  
Vol 10 (13) ◽  
pp. 4479
Author(s):  
Junpil Park ◽  
Jaesun Lee ◽  
Junki Min ◽  
Younho Cho

Steel wires are widely used as raw materials for spring valves in engines. Considering the quality and safety issues of their structure, there is a demand to develop nondestructive inspection approaches to detect initial damages in steel. In this study, nonlinear ultrasonic-guided waves generated by an electromagnetic acoustic transducer (EMAT) were used to inspect the defects in steel wires. As one of the noncontact testing methods, the use of EMAT has significant advantages to decrease the nonlinearity induced by instruments and transducer contact condition. The principles of design and manufacturing of EMAT are first introduced. The fundamental theory of nonlinear guided waves is also briefly discussed in this investigation. Phase-matched guided wave modes were generated and measured by using EMAT. Variations of acoustic nonlinearity corresponding to existing defects in specimens were obtained. A scanning electron microscope (SEM) was used to check the existence of microdefects in specimen. The results indicate that the use of EMAT can be an effective means to generate and measure nonlinear ultrasonic-guided waves for inspection of microdefects.


Author(s):  
Xuewei Sun ◽  
Fucai Li ◽  
Jinfu Wang ◽  
Guang Meng ◽  
Limin Zhou

Pressure vessel is a kind of special equipment with explosion and leakage dangerous. Therefore, structural health monitoring (SHM) techniques for pressure vessel should ensure the safe operation of this kind of equipments and is becoming more crucial in petroleum, chemical, and relative industries. Guided wave-based structural health monitoring technique can be an appropriate method for real-time and online non-destructive damage monitoring technique. In recent years, applications of guided wave-based structural health monitoring techniques are mainly limited in simple structures, such as plates and tubes. Relatively few research papers focused on the application of this technique in large and complex structures like pressure vessels. Propagation characteristics of guided waves in pressure vessel are investigated in this study. Dispersion curves calculated by using numerical methods for longitudinal, circumferential, and torsional modes are presented. On the basis of comprehensive analysis of the guided waves dispersion and experimental waveforms, the parameters of the excitation wave are therefore optimized. In order to overcome the difficulties to identify the damage characteristics of signal, the layout scheme of sensor network is designed and optimized in this paper to simplify the waveform. Furthermore, both finite element analysis (FEA) and experiment methods are employed to investigate the propagation of elastic guided waves in a standard pressure vessel.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Jian He ◽  
Chen Zhou ◽  
Liang Yang ◽  
Xiaodan Sun

Pipeline structures are important structural components that cannot be replaced in actual engineering applications. Damage to a pipeline structure will create substantial safety hazards and economic losses in a project. Therefore, it is extremely important to study damaged pipeline structures. In this paper, L(0,2) mode guided waves are used to identify, locate, and image single and double defects in straight pipe structures. For the case where there is a single defect in the straight pipe section, the influence of different excitation frequencies on the reflection coefficient of L(0,2) modal guided wave is studied, and the optimal excitation frequency of L(0,2) guided wave is 70 kHz when single damage is determined. For the case of double defects in the straight pipe section, the double-defect size, the distance between the defects, and the relative defect positions are studied, and the influence of the defect recognition effect is analyzed. The propagation path of the ultrasonic guided wave in the double-defect pipe section is analyzed. Finally, the effectiveness of the three-point axial positioning method and damage imaging method is verified by the single-defect tube segment ultrasonic guided wave flaw detection experiment.


2011 ◽  
Vol 39 (3) ◽  
pp. 193-209 ◽  
Author(s):  
H. Surendranath ◽  
M. Dunbar

Abstract Over the last few decades, finite element analysis has become an integral part of the overall tire design process. Engineers need to perform a number of different simulations to evaluate new designs and study the effect of proposed design changes. However, tires pose formidable simulation challenges due to the presence of highly nonlinear rubber compounds, embedded reinforcements, complex tread geometries, rolling contact, and large deformations. Accurate simulation requires careful consideration of these factors, resulting in the extensive turnaround time, often times prolonging the design cycle. Therefore, it is extremely critical to explore means to reduce the turnaround time while producing reliable results. Compute clusters have recently become a cost effective means to perform high performance computing (HPC). Distributed memory parallel solvers designed to take advantage of compute clusters have become increasingly popular. In this paper, we examine the use of HPC for various tire simulations and demonstrate how it can significantly reduce simulation turnaround time. Abaqus/Standard is used for routine tire simulations like footprint and steady state rolling. Abaqus/Explicit is used for transient rolling and hydroplaning simulations. The run times and scaling data corresponding to models of various sizes and complexity are presented.


Author(s):  
Tochukwu Moses ◽  
David Heesom ◽  
David Oloke ◽  
Martin Crouch

The UK Construction Industry through its Government Construction Strategy has recently been mandated to implement Level 2 Building Information Modelling (BIM) on public sector projects. This move, along with other initiatives is key to driving a requirement for 25% cost reduction (establishing the most cost-effective means) on. Other key deliverables within the strategy include reduction in overall project time, early contractor involvement, improved sustainability and enhanced product quality. Collaboration and integrated project delivery is central to the level 2 implementation strategy yet the key protocols or standards relative to cost within BIM processes is not well defined. As offsite construction becomes more prolific within the UK construction sector, this construction approach coupled with BIM, particularly 5D automated quantification process, and early contractor involvement provides significant opportunities for the sector to meet government targets. Early contractor involvement is supported by both the industry and the successive Governments as a credible means to avoid and manage project risks, encourage innovation and value add, making cost and project time predictable, and improving outcomes. The contractor is seen as an expert in construction and could be counter intuitive to exclude such valuable expertise from the pre-construction phase especially with the BIM intent of äóÖbuild it twiceäó», once virtually and once physically. In particular when offsite construction is used, the contractoräó»s construction expertise should be leveraged for the virtual build in BIM-designed projects to ensure a fully streamlined process. Building in a layer of automated costing through 5D BIM will bring about a more robust method of quantification and can help to deliver the 25% reduction in overall cost of a project. Using a literature review and a case study, this paper will look into the benefits of Early Contractor Involvement (ECI) and the impact of 5D BIM on the offsite construction process.


2021 ◽  
pp. 147592172110053
Author(s):  
Qian Ji ◽  
Li Jian-Bin ◽  
Liu Fan-Rui ◽  
Zhou Jian-Ting ◽  
Wang Xu

The seven-wire strands are the crucial components of prestressed structures, though their performance inevitably degrades with the passage of time. The ultrasonic guided wave methods have been intensely studied, owing to its tremendous potential for full-scale applications, among the existing nondestructive testing methods, for evaluating the stress status of strands. We have employed the theoretical and finite element methods to solve the dispersion curve of single wire and steel strands under various boundary conditions. Thereafter, the singular value decomposition was adopted to work with the simulated and experimental signals for extracting a feature vector that carries valuable stress status information. The effectiveness of the vector was verified by analyzing the relationship between the vector and the stress level. The vector was also used as an input to establish a support vector regression model. The accuracy of the model has been discussed for different sample sizes. The results show that the fundamental mode dispersion curve offset on the high-frequency part and cut-off frequency increases as the boundary constraints enhance. Simulated and experimental results have demonstrated the effectiveness and potential of the proposed support vector regression method for evaluating the stress level in the strands. This method performs well even at low stress levels and the reliability can be enhanced by adding more samples.


Sign in / Sign up

Export Citation Format

Share Document