Green-State Micromilling of Additive Manufactured AISI316 L

2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Sandeep Kuriakose ◽  
Paolo Parenti ◽  
Salvatore Cataldo ◽  
Massimiliano Annoni

Additive manufacturing (AM) of metal offers matchless design sovereignty to manufacture metallic microcomponents from a wide range of materials. Green-state micromilling is a promising method that can be integrated into the AM of metallic feedstock microcomponents in typical extrusion-based AM methods for compensating the inability to generate microfeatures. The integration enables the manufacturing of complex geometries, the generation of good surface quality, and can provide exceptional flexibility to new product shapes. This work is a micromachinability study of AISI316 L feedstock components produced by extrusion-based AM where the effects of workpiece temperature and the typical micromilling parameters such as cutting speed, feed per tooth, axial depth of cut, and air supply are studied. Edge integrity and surface roughness of the machined slots, as well as cutting forces, are analyzed using three-dimensional microscopy and piezoelectric force sensor, respectively. Green-state micromilling results were satisfying with good produced quality. The micromilling of heated workpieces (45 °C), with external air supply for debris removal, showed the best surface quality with surface roughness values that reached around Sa = 1.5 μm, much smaller than the average metal particles size. Minimum tendency to borders breakage was showed but in some cases microcutting was responsible of the generation of surface defects imputable to lack of adhesion of deposited layers. Despite this fact, the integrability of micromilling into extrusion-based AM cycles of metallic feedstock is confirmed.

2013 ◽  
Vol 589-590 ◽  
pp. 76-81
Author(s):  
Fu Zeng Wang ◽  
Jun Zhao ◽  
An Hai Li ◽  
Jia Bang Zhao

In this paper, high speed milling experiments on Ti6Al4V were conducted with coated carbide inserts under a wide range of cutting conditions. The effects of cutting speed, feed rate and radial depth of cut on the cutting forces, chip morphologies as well as surface roughness were investigated. The results indicated that the cutting speed 200m/min could be considered as a critical value at which both relatively low cutting forces and good surface quality can be obtained at the same time. When the cutting speed exceeds 200m/min, the cutting forces increase rapidly and the surface quality degrades. There exist obvious correlations between cutting forces and surface roughness.


Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 75
Author(s):  
Nikolaos E. Karkalos ◽  
Panagiotis Karmiris-Obratański ◽  
Szymon Kurpiel ◽  
Krzysztof Zagórski ◽  
Angelos P. Markopoulos

Surface quality has always been an important goal in the manufacturing industry, as it is not only related to the achievement of appropriate geometrical tolerances but also plays an important role in the tribological behavior of the surface as well as its resistance to fatigue and corrosion. Usually, in order to achieve sufficiently high surface quality, process parameters, such as cutting speed and feed, are regulated or special types of cutting tools are used. In the present work, an alternative strategy for slot milling is adopted, namely, trochoidal milling, which employs a more complex trajectory for the cutting tool. Two series of experiments were initially conducted with traditional and trochoidal milling under various feed and cutting speed values in order to evaluate the capabilities of trochoidal milling. The findings showed a clear difference between the two milling strategies, and it was shown that the trochoidal milling strategy is able to provide superior surface quality when the appropriate process parameters are also chosen. Finally, the effect of the depth of cut, coolant and trochoidal stepover on surface roughness during trochoidal milling was also investigated, and it was found that lower depths of cut, the use of coolant and low values of trochoidal stepover can lead to a considerable decrease in surface roughness.


Author(s):  
Zhanfei Zhang ◽  
Zengqiang Wang ◽  
Wenhu Wang ◽  
Ruisong Jiang ◽  
Yifeng Xiong

High-speed cutting technology has the characteristics of high material removal rate and excellent processing quality. To investigate the surface quality of high-speed cutting Ti6Al4V alloy, the orthogonal cutting experiment is the cutting device based on improved Split-Hopkinson pressure bar carried out with a cutting speed of about 7–16 m/s. Surface roughness, residual stress and three-dimensional surface topography are examined to characterize the surface quality. And the chip geometry parameters are measured to analyze the formation mechanism of surface topography. The result shows that cutting force and surface roughness increase rapidly with the increase in depth of cut. In the meantime, the periodic microwaves appeared on the machined surface, and their amplitudes increase with the increase in depth of cut. However, surface roughness, residual stress and microwave amplitude all decrease with the increase in cutting speed. Moreover, it is found that the evolution trend of chip thickness and surface roughness with cutting parameters is very similar. Therefore, it can be inferred that there is a strong relationship between surface topography and chip morphology.


2021 ◽  
Vol 27 (1) ◽  
pp. 30-35
Author(s):  
Youcef Abidi

Abstract Tool wear and surface roughness as performance indexes are considered to be the most important in terms of hardened materials’ machinability. The best combination of cutting parameters which enhances the compromise between tool life, productivity and machined surface quality contribute to benefice on production cost, which makes manufacturing industry interested in it. The aim of this research is to investigate the life of ceramic cutting tool and machining productivity together with surface roughness during turning of hardened steel C45, with focus on the selection of the optimal cutting parameter combination. The experiments are carried out based on uni-factorial planning methodology of cutting speeds and feed rates. The results show that the mixed ceramic tool is suitable for turning hardened steel C45 (40 HRC) and the conclusion is that it performed well in terms of tool life, productivity and surface quality at a combination of cutting speed (200 m/min), feed (0.08 mm/rev) and depth of cut (0.3 mm). Additionally, a tool life model has been proposed which is presented very high coefficient of determination.


Author(s):  
Chetan Darshan ◽  
Lakhvir Singh ◽  
APS Sethi

Manufacturers around the globe persistently looking for the cheapest and quality manufactured machined components to compete in the market. Good surface quality is desired for the proper functioning of the produced parts. The surface quality is influenced by cutting speed, feed rate and depth of cut and many other parameters. In the present study attempt has been made to evaluate the performance of ceramic inserts during hard turning of EN-31 steel. The analysis of variance is applied to study the effect of cutting speed, feed rate and depth of cut on Flank wear and surface roughness. Model is found to be statically significant using regression model, while feed and depth of cut are the factor affecting Flank wear and feed is dominating factors for surface roughness. The analysis of variance was used to analyze the input parameters and there interactions during machining. The developed model predicted response factor at 95% confidence level.


2011 ◽  
Vol 464 ◽  
pp. 496-500
Author(s):  
Xiao Hong Xue ◽  
Xu Hong Guo ◽  
Ting Ting Chen ◽  
Dong Dong Wan ◽  
Qiao Wang

Three cutting tools of different materials (ceramics CC6050, cubic boron nitride CB7025, carbide GC2025) are used for dry turning of 9 groups of ADI which heat-treated under different quenching time and quenching temperature. The surface roughness of ADI workpieces were tested after the finish turning at changed cutting parameters, and the influencing factors of surface quality were analysed. Results showed that the surface roughness values of all 9 groups of ADI workpieces obtained by CC6050 were the lowest and the surface quality was better at lower depth of cut ap and feed rate f with higher cutting speed vc . Meanwhile, the surface roughness was influenced by the isothermal quenching parameters of ADI workpieces significantly.


2017 ◽  
Vol 909 ◽  
pp. 80-85 ◽  
Author(s):  
Mohd Rasidi Ibrahim ◽  
Tharmaraj Sreedharan ◽  
Nurul Aisyah Fadhlul Hadi ◽  
Mohammad Sukri Mustapa ◽  
Al Emran Ismail ◽  
...  

Machining parameters is a main aspect in performing turning operations using lathe machines. Cutting parameters such as cutting speed, feed rate and depth of cut gives big influence on the dynamic behavior of the machining system. In machining parts, surface quality and tool wear are the most crucial customer requirements. This is because the major indication of surface quality on machined part is the surface roughness and the value of tool wear. Hence, to improve the surface roughness and minimize the forming of tool wear, the optimum feed rate and cutting speed will be determined. The input parameter such as cutting speed, feed rate and depth of cut always influence the tool wear, surface roughness, cutting force, cutting temperature, tool life and dimensional accuracy. The D2 steel was being investigated from the perspective of the effect of cutting speed and feed rate on its surface roughness and tool wear. The results show that cutting speed is the main parameter which affects the surface roughness where the most optimum parameter would be at cutting speed of 173, 231 and 288 m/min with feed rate of 0.15 mm/rev. The tool wear strongly affected by feed rate where at 0.15 mm/rev the tool wear value is the lowest. The combination of high cutting speed and low feed rate was the best parameter to achieve smooth surface roughness.


Author(s):  
N. M. Vaxevanidis ◽  
N. I. Galanis ◽  
G. P. Petropoulos ◽  
N. Karalis ◽  
P. Vasilakakos ◽  
...  

High-speed machining is widely applied for the processing of lightweight materials and also structural and tool steels. These materials are intensively used in the aerospace and the automotive industries. The advantages of high-speed machining lie not only in the speed of machining (lower costs and higher productivity) but also in attaining higher surface quality (prescribed surface roughness without surface defects). Based on this concept, in the present paper the high speed-dry turning of AISI O, (manganese-chromium-tungsten / W.-Nr. 1.2510) tool-steel specimens is reported. The influence of the main machining parameters i.e., cutting speed, feed rate and depth of cut on the resulted center-line average surface roughness (Ra) is examined. Types of wear phenomena occurred during the course of the present experimental study as well as tool wear patterns were also monitored.


2013 ◽  
Vol 773-774 ◽  
pp. 894-901
Author(s):  
Muhammad Yusuf ◽  
M.K.A. Ariffin ◽  
N. Ismail ◽  
S. Sulaiman

Majority of the components of aerospace and automotive vehicles need different machining operations, mainly for the assembly requirements. The components have to present both high dimensional precision and surface quality. This present work is concerned with the effect of cutting parameters (cutting speed, feed rate and depth of cut) on the surface roughness and the chip formation in turning process. The machining results are compared with LM6 aluminium alloy and TiC reinforced metal matrix composite under the same cutting conditions and tool geometry. The cutting condition models designed based on the Design of Experiments Response Surface Methodology. The objective of this research is to obtaining the optimum cutting parameters to get a better surface quality and also the chip formation and furthermore does not hazardous to the worker and the machined products quality. Results shows that Surface roughness values of LM6-TiC composite are higher as compared LM6 alloy at similar cutting condition. With increasing in cutting speed improves the surface quality. The surface quality increases with decrease of the feed rate and the depth of cut. There are difference chip forms for LM6 aluminium alloy and Al-TiC composite for a similar of cutting condition. Generally, chip formations of both materials are acceptable and favourable for the worker as well as the products and the tools.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1172
Author(s):  
Abdulmajeed Dabwan ◽  
Saqib Anwar ◽  
Ali M. Al-Samhan ◽  
Mustafa M. Nasr

The machining of the electron beam melting (EBM) produced parts is a challenging task because, upon machining, different part orientations (EBM layers’ orientations) produce different surface quality even when the same machining parameters are employed. In this paper, the EBM fabricated parts are machined in three possible orientations with regard to the tool feed direction, where the three orientations are “tool movement in a layer plane” (TILP), “tool movement perpendicular to layer planes” (TLP), and “tool movement parallel to layers planes” (TPLP). The influence of the feed rate, radial depth of cut, and cutting speed is studied on surface roughness, cutting force, micro-hardness, microstructure, chip morphology, and surface morphology of Ti6Al4V, while considering the EBM part orientations. It was found that different orientations have different effects on the machined surface during milling. The results show that the EBM parts can achieve good surface quality and surface integrity when milled along the TLP orientation. For instance, surface roughness (Sa) can be improved up to 29% when the milling tool is fed along the TLP orientation compared to the other orientations (TILP and TPLP). Furthermore, surface morphology significantly improves with lower micro-pits, redeposited chips, and feed marks in case of the TLP orientation.


Sign in / Sign up

Export Citation Format

Share Document