Development of a Thermal Autofrettage Setup to Generate Compressive Residual Stresses on the Surfaces of a Cylinder

2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Rajkumar Shufen ◽  
Nilkamal Mahanta ◽  
Uday S. Dixit

Recently, a heat treatment technique has been proposed to induce compressive residual stresses at the vicinity of the outer wall of a thermally autofrettaged cylinder. In the proposed technique, the outer wall of a thermally autofrettaged vessel is heated above the lower critical temperature while temperature of the inner wall is kept below it. The cylinder is then quenched, which induces compressive residual stresses both at the inner and outer walls. This article presents the construction and working of an experimental setup to carry out the proposed heat treatment coupled thermal autofrettage process. Experiments are carried out on AH36 mild steel cylinders to assess the presence of the compressive residual stresses. Measurement of microhardness and opening angle of cut in a thermally autofrettaged AH36 steel cylinder provided the evidence for compressive residual stresses at the outer wall of the cylinder. A finite element method (FEM) technique was used to predict the opening angle of cut. Predicted opening angle was fairly close to experimental observation.

2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Rajkumar Shufen ◽  
Uday S. Dixit

Abstract Recently, a method of inducing compressive residual stresses in the vicinity of the walls of a thermally autofrettaged cylinder was proposed. In the proposed method, the thermally autofrettaged cylinder was heated in such a manner that its outer wall attained a temperature more than the lower critical temperature and the inner wall was at a sufficiently lower temperature. When the cylinder was quenched, compressive residual stresses were induced in the vicinity of the cylinder walls. This article investigates the feasibility of the same procedure for a hydraulic-autofrettaged cylinder made of AISI 1080 steel. A finite element method (FEM)-based analysis is carried out using commercial package abaqus by incorporating microstructure and temperature-dependent material properties. The results indicate that the heat treatment design proposed for the thermally autofrettaged cylinder to induce compressive residual stresses at the outer wall can also be adapted for a hydraulic-autofrettaged cylinder. However, for cylinders subjected to high percentage of autofrettage, heating of the outer wall needs to be carried out well below the lower critical temperature. In fact, this is an advantage in terms of energy saving and can be implemented even for cylinders subjected to a low percentage of autofrettage.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1154
Author(s):  
Diego E. Lozano ◽  
George E. Totten ◽  
Yaneth Bedolla-Gil ◽  
Martha Guerrero-Mata ◽  
Marcel Carpio ◽  
...  

Automotive components manufacturers use the 5160 steel in leaf and coil springs. The industrial heat treatment process consists in austenitizing followed by the oil quenching and tempering process. Typically, compressive residual stresses are induced by shot peening on the surface of automotive springs to bestow compressive residual stresses that improve the fatigue resistance and increase the service life of the parts after heat treatment. In this work, a high-speed quenching was used to achieve compressive residual stresses on the surface of AISI/SAE 5160 steel samples by producing high thermal gradients and interrupting the cooling in order to generate a case-core microstructure. A special laboratory equipment was designed and built, which uses water as the quenching media in a high-speed water chamber. The severity of the cooling was characterized with embedded thermocouples to obtain the cooling curves at different depths from the surface. Samples were cooled for various times to produce different hardened case depths. The microstructure of specimens was observed with a scanning electron microscope (SEM). X-ray diffraction (XRD) was used to estimate the magnitude of residual stresses on the surface of the specimens. Compressive residual stresses at the surface and sub-surface of about −700 MPa were obtained.


2013 ◽  
Vol 433-435 ◽  
pp. 1898-1901
Author(s):  
Li Juan Cao ◽  
Shou Ju Li ◽  
Zi Chang Shangguan

Shot peening is a manufacturing process intended to give components the final shape and to introduce a compressive residual state of stress inside the material in order to increase fatigue life. The modeling and simulation of the residual stress field resulting from the shot peening process are proposed. The behaviour of the peened target material is supposed to be elastic plastic with bilinear characteristics. The results demonstrated the surface layer affected by compressive residual stresses is very thin and the peak is located on the surface.


2014 ◽  
Vol 996 ◽  
pp. 609-614 ◽  
Author(s):  
Lin Peng Ru ◽  
Johan Moverare ◽  
Pajazit Avdovic ◽  
Annethe Billenius ◽  
Zhe Chen

In this paper we investigated the influence of vibratory stress relieving technique, which is widely used for stress relaxation of weld and casting components/structure, on machining residual stresses in a ring-component of 12%Cr-steel. It was shown that the employed vibratory treatment, without significantly altering the microstructure, turned the surface layer from tension into compression but retained the compressive residual stresses in the subsurface. In comparison, a stress relieving heat treatment, included as a reference in the study, removed completely the surface tensile residual stresses and reduced the subsurface compressive residual stresses to a low level. Significant microstructural changes in the form of recrystallization also occurred in a thin surface layer of the machining affected zone after the heat treatment.


Author(s):  
Rohit Voothaluru ◽  
C. Richard Liu

Laser shock peening is a surface treatment technique similar to conventional shot peening. The laser induced plasma causes plastic deformations and compressive residual stresses in materials which are useful for developing improved properties in the fields of fatigue, wear or stress corrosion cracking. Finite element method is an efficient tool to predict the mechanical effects and the deformations caused due to laser shock peening, which otherwise are difficult to calculate due to the severe pressure imparted in a very short period of time. This paper presents the calculations performed using ABAQUS, for the simulation of multiple laser shock processing in order to evaluate the residual stress and the deformation of the material. A study of the effect of multiple laser shocks and their extent of overlap on the affected depths and the tensile and compressive residual stresses has been discussed. FEM calculations of residual stress fields and extent of surface deformation in annealed AISI 1053 steel has been investigated along with a study of the distribution of tensile and compressive residual stresses due to the difference in the extent of overlap of the multiple shocks.


Author(s):  
Rohit Voothaluru ◽  
C. Richard Liu ◽  
Gary J. Cheng

Laser shock peening (LSP) is a surface treatment technique similar to conventional shot peening. The laser induced plasma causes plastic deformations and compressive residual stresses that are useful for developing improved properties in the fields of resistance to fatigue, wear or stress corrosion cracking. The actual distribution of residual stresses is extremely important while designing for improved fatigue life using laser shock peening, as fatigue cracks would initiate from the weakest point in the structure. In this paper, the variations in distribution of residual stresses due to laser shock peening are studied with a focus on two materials, annealed 1053 and hardened 52100 AISI steels. A 3D finite element model was developed to study the actual distributions of the residual stresses due to laser shock peening. The effect of hardness on the distribution of the residual stresses and the presence of tensile residual stresses in the surrounding regions of the impact is analyzed. Much larger variations in the residual stress distributions were observed in case of the 1053 steel as compared to hardened 52100 steel. A comprehensive analysis of the simulation results was performed in order to address and explain this behavior. It was observed that the extent of overlap would also affect the variations in the residual stress distributions. The tensile residual stresses present in the areas surrounding the shocked region were also analyzed based upon the extent of overlap and the hardness of the material. It was observed that the ratio of peak tensile to compressive residual stresses developed in 1053 steel was much higher as compared to that in the hardened 52100 steel.


2014 ◽  
Vol 891-892 ◽  
pp. 115-120
Author(s):  
Qian Chu Liu ◽  
Wyman Zhuang ◽  
Peter Khan Sharp

The Deep Surface Rolling (DSR) technology can substantially increase the fatigue life of metallic materials due to the introduction of deep compressive residual stresses in the material surface. These beneficial compressive residual stresses can be achieved up to a depth of 1 mm. The DSR technology also produces a good surface finish unlike bead peening technology. In this study, the main objectives were: (1) to study the feasibility of DSR for fatigue life improvement of high strength aluminium alloy (7075-T651) repaired with laser cladding technology, and (2) to investigate the effect of thermal stressing on the fatigue life improvement of DSR. Previously published results have shown that post-heat treatment of laser clad high strength Al alloy coupons improved their fatigue life. The experimental results in this paper show that the fatigue life was substantially increased using the DSR technique on laser clad 7075-T6 aluminium alloy compared to laser cladding alone and laser cladding followed by post heat treatment.


2011 ◽  
Vol 279 ◽  
pp. 291-295
Author(s):  
Yan Bin Li ◽  
Tong Jiang ◽  
Peng Zheng

Ausform finishing process plastically deforms the surface of a steel component, generates compressive residual stresses in the surface layer, and imparts added strength and durability to the component. It integrates heat treatment, roll finishing and hardening of steel components into a single in-line manufacturing operation. The gear steel 20CrMo is introduced to determine various operation parameter of this process. The experiment results shown that ausform finished gears have the advantages of improved surface finish and profile accuracy.


2021 ◽  
Vol 5 (2) ◽  
pp. 55
Author(s):  
Robert Zmich ◽  
Daniel Meyer

Knowledge of the relationships between thermomechanical process loads and the resulting modifications in the surface layer enables targeted adjustments of the required surface integrity independent of the manufacturing process. In various processes with thermomechanical impact, thermal and mechanical loads act simultaneously and affect each other. Thus, the effects on the modifications are interdependent. To gain a better understanding of the interactions of the two loads, it is necessary to vary thermal and mechanical loads independently. A new process of laser-combined deep rolling can fulfil exactly this requirement. The presented findings demonstrate that thermal loads can support the generation of residual compressive stresses to a certain extent. If the thermal loads are increased further, this has a negative effect on the surface layer and the residual stresses are shifted in the direction of tension. The results show the optimum range of thermal loads to further increase the compressive residual stresses in the surface layer and allow to gain a better understanding of the interactions between thermal and mechanical loads.


Sign in / Sign up

Export Citation Format

Share Document