The Stiffness-Threshold Conflict in Polymer Networks and a Resolution
Abstract Stiffness and fatigue threshold are important material parameters in load-carrying applications. However, it is impossible to achieve both high stiffness and high threshold for single-network elastomers and single-network hydrogels. As the polymer chain length increases, the stiffness reduces, but the threshold increases. Here, we show that this stiffness-threshold conflict is resolved in double-network hydrogels, where the stiffness depends on the short-chain network, but the threshold depends on the long-chain network. Experimental data in the literature have shown that the stiffness of the hydrogels is inversely proportional to chain length of the short-chain network. In this paper we measure the threshold of PAAm-PAMPS hydrogels with five different chain lengths of the long-chain network. We find that the threshold is proportional to 1/2 power of the chain length of the long-chain network. The resolution of the conflict enables the design of elastomers and hydrogels to achieve both high stiffness and high threshold.