scholarly journals Lipopolysaccharide O-Antigen Chain Length Regulation in Pseudomonas aeruginosa Serogroup O11 Strain PA103

2007 ◽  
Vol 190 (8) ◽  
pp. 2709-2716 ◽  
Author(s):  
Erica Kintz ◽  
Jennifer M. Scarff ◽  
Antonio DiGiandomenico ◽  
Joanna B. Goldberg

ABSTRACT The Wzz proteins are important for determining the length of the O-antigen side chain attached to lipopolysaccharide (LPS). Several bacteria, including Pseudomonas aeruginosa strain PAO1 (serogroup O5), produce two such proteins responsible for the preference of two different chain lengths on the surface. Our group has previously identified one wzz gene (wzz1) within the O-antigen locus of P. aeruginosa strain PA103 (serogroup O11). In this study we have identified the second wzz gene (wzz2), located in the same region of the genome and with 92% similarity to PAO1's wzz2 gene. Mutations were generated in both wzz genes by interruption with antibiotic resistance cassettes, and the effects of these mutations were characterized. Wild-type PA103 prefers two O-antigen chain lengths, referred to as long and very long. The expression of the long O-antigen chain length was reduced in the wzz1 mutant, indicating the Wzz1 protein is important for this chain length preference. The wzz2 mutant, on the other hand, was missing O-antigens of the very long chain length, indicating the Wzz2 protein is responsible for the production of very long O-antigen. The effects of the wzz mutations on virulence were also investigated. In both serum sensitivity assays and a mouse pneumonia model of infection, the wzz1 mutants exhibited greater defects in virulence compared to either wild-type PA103 or the wzz2 mutant, indicating the long chain length plays a greater role during these infectious processes.

2005 ◽  
Vol 187 (9) ◽  
pp. 3002-3012 ◽  
Author(s):  
Priyanka D. Abeyrathne ◽  
Craig Daniels ◽  
Karen K. H. Poon ◽  
Mauricia J. Matewish ◽  
Joseph S. Lam

ABSTRACT The O antigen of Pseudomonas aeruginosa B-band lipopolysaccharide is synthesized by assembling O-antigen-repeat units at the cytoplasmic face of the inner membrane by nonprocessive glycosyltransferases, followed by polymerization on the periplasmic face. The completed chains are covalently attached to lipid A core by the O-antigen ligase, WaaL. In P. aeruginosa the process of ligating these O-antigen molecules to lipid A core is not clearly defined, and an O-antigen ligase has not been identified until this study. Using the sequence of waaL from Salmonella enterica as a template in a BLAST search, a putative waaL gene was identified in the P. aeruginosa genome. The candidate gene was amplified and cloned, and a chromosomal knockout of PAO1 waaL was generated. Lipopolysaccharide (LPS) from this mutant is devoid of B-band O-polysaccharides and semirough (SR-LPS, or core-plus-one O-antigen). The mutant PAO1waaL is also deficient in the production of A-band polysaccharide, a homopolymer of d-rhamnose. Complementation of the mutant with pPAJL4 containing waaL restored the production of both A-band and B-band O antigens as well as SR-LPS, indicating that the knockout was nonpolar and waaL is required for the attachment of O-antigen repeat units to the core. Mutation of waaL in PAO1 and PA14, respectively, could be complemented with waaL from either strain to restore wild-type LPS production. The waaL mutation also drastically affected the swimming and twitching motilities of the bacteria. These results demonstrate that waaL in P. aeruginosa encodes a functional O-antigen ligase that is important for cell wall integrity and motility of the bacteria.


2019 ◽  
Vol 201 (15) ◽  
Author(s):  
Steven M. Huszczynski ◽  
Chelsea Coumoundouros ◽  
Phi Pham ◽  
Joseph S. Lam ◽  
Cezar M. Khursigara

ABSTRACTThe outer leaflet of the outer membrane of nearly all Gram-negative bacteria contains lipopolysaccharide (LPS). The distal end of LPS may be capped with O antigen, a long polysaccharide that can range from a few to hundreds of sugars in length. The chain length of the polysaccharide has many implications for bacterial survival and consequently is tightly controlled. In the Wzx/Wzy-dependent route of O antigen synthesis, one or more Wzz proteins determine the chain length via an unknown mechanism. To gain insight into this mechanism, we identified and characterized important regions of two Wzz proteins inPseudomonas aeruginosaserotype O13, which confer the production of “long” (Wzz1) and “very long” (Wzz2) chain lengths, respectively. We found that compared to Wzz1, Wzz2has distinct amino acid insertions in the central α-helices (insα6and insα7) and in membrane-distal (insL4) and -proximal (insIL) loops. When these regions were deleted in Wzz2, the mutant proteins conferred drastically shortened chain lengths. Within these regions we identified several conserved amino acid residues that were then targeted for site-directed mutagenesis. Our results implicate an RTE motif in loop 4 and a “hot spot” of charged and polar residues in insα7in the function of Wzz2. We present evidence that the functionally important residues of insα7are likely involved in stabilizing Wzz through coiled-coil interactions.IMPORTANCEO antigen is an important virulence factor presented on the cell surface of Gram-negative bacteria that is critical for bacterial physiology and pathogenesis. However, some aspects of O antigen biosynthesis, such as the mechanisms for determining polysaccharide chain length, are poorly understood. In this study, we identified unique regions in the O antigen chain length regulators (termed Wzz) of the problematic opportunistic pathogenPseudomonas aeruginosa. We show that these regions are critical for determining O antigen chain length, which provides new insight into the model of the Wzz mechanism. Ultimately, our work adds knowledge toward understanding an important step in the biosynthesis of this virulence factor, which is applicable to a wide range of Gram-negative pathogens.


1996 ◽  
Vol 1996 ◽  
pp. 98-98
Author(s):  
B M L McLean ◽  
R W Mayes ◽  
F D DeB Hovell

Alkanes occur naturally in all plants, although forage crops tend to have higher alkane contents than cereals. N-alkanes have odd-numbered carbon chains. They are ideal for use as markers in feed trials, because, they are inert, indigestible and naturally occurring, and can be recovered in animal faeces. Synthetic alkanes (even-numbered carbon chains) are available commercially and can also used as external markers. Dove and Mayes (1991) cite evidence indicating that faecal recovery of alkanes in ruminants increases with increasing carbon-chain length. Thus the alkane “pairs” (e.g. C35 & C36, and C32 & C33) are used in calculating intake and digestibility because they are long chain and adjacent to each other. However, recent work by Cuddeford and Mayes (unpublished) has found that in horses the faecal recovery rates are similar regardless of chain lengths.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1279
Author(s):  
Dmitry Tolmachev ◽  
Natalia Lukasheva ◽  
George Mamistvalov ◽  
Mikko Karttunen

Investigation of the effect of CaCl2 salt on conformations of two anionic poly(amino acids) with different side chain lengths, poly-(α-l glutamic acid) (PGA) and poly-(α-l aspartic acid) (PASA), was performed by atomistic molecular dynamics (MD) simulations. The simulations were performed using both unbiased MD and the Hamiltonian replica exchange (HRE) method. The results show that at low CaCl2 concentration adsorption of Ca2+ ions lead to a significant chain size reduction for both PGA and PASA. With the increase in concentration, the chains sizes partially recover due to electrostatic repulsion between the adsorbed Ca2+ ions. Here, the side chain length becomes important. Due to the longer side chain and its ability to distance the charged groups with adsorbed ions from both each other and the backbone, PGA remains longer in the collapsed state as the CaCl2 concentration is increased. The analysis of the distribution of the mineral ions suggests that both poly(amino acids) should induce the formation of mineral with the same structure of the crystal cell.


2015 ◽  
Vol 112 (42) ◽  
pp. 12962-12967 ◽  
Author(s):  
Lihong Zhao ◽  
Stefka Spassieva ◽  
Kenneth Gable ◽  
Sita D. Gupta ◽  
Lan-Ying Shi ◽  
...  

Sphingolipids typically have an 18-carbon (C18) sphingoid long chain base (LCB) backbone. Although sphingolipids with LCBs of other chain lengths have been identified, the functional significance of these low-abundance sphingolipids is unknown. The LCB chain length is determined by serine palmitoyltransferase (SPT) isoenzymes, which are trimeric proteins composed of two large subunits (SPTLC1 and SPTLC2 or SPTLC3) and a small subunit (SPTssa or SPTssb). Here we report the identification of an Sptssb mutation, Stellar (Stl), which increased the SPT affinity toward the C18 fatty acyl-CoA substrate by twofold and significantly elevated 20-carbon (C20) LCB production in the mutant mouse brain and eye, resulting in surprising neurodegenerative effects including aberrant membrane structures, accumulation of ubiquitinated proteins on membranes, and axon degeneration. Our work demonstrates that SPT small subunits play a major role in controlling SPT activity and substrate affinity, and in specifying sphingolipid LCB chain length in vivo. Moreover, our studies also suggest that excessive C20 LCBs or C20 LCB-containing sphingolipids impair protein homeostasis and neural functions.


2015 ◽  
Vol 197 (17) ◽  
pp. 2780-2791 ◽  
Author(s):  
Youai Hao ◽  
Kathleen Murphy ◽  
Reggie Y. Lo ◽  
Cezar M. Khursigara ◽  
Joseph S. Lam

ABSTRACTPseudomonas aeruginosaPA14 is widely used by researchers in many laboratories because of its enhanced virulence over strain PAO1 in a wide range of hosts. Although lipopolysaccharide (LPS) is an important virulence factor of allP. aeruginosastrains, the LPS of PA14 has not been characterized fully. A recent study showed that the structure of its O-specific antigen (OSA) belongs to serotype O19. We found that the OSA gene cluster of PA14 shares ∼99% identity with those of the O10/O19 group. These two serotypes share the same O-unit structure, except for anO-acetyl substitution in one of the sugars in O10. Here we showed that both PA14 and O19 LPS cross-reacted with the O10-specific monoclonal antibody MF76-2 in Western blots. Analysis by SDS-PAGE and silver staining showed that PA14 LPS exhibited modal chain lengths that were different from those of O19 LPS, in that only “very long” and “short” chain lengths were observed, while “medium” and “long” chain lengths were not detected. Two other novel observations included the lack of the uncapped core oligosaccharide epitope and of common polysaccharide antigen (CPA) LPS. The lack of the uncapped core oligosaccharide was caused by point mutations in the glycosyltransferase genemigA, while the CPA-negative phenotype was correlated with a single amino acid substitution, G20R, in the glycosyltransferase WbpX. Additionally, we showed that restoring CPA biosynthesis in PA14 significantly stimulated mature biofilm formation after 72 h, while outer membrane vesicle production was not affected.IMPORTANCEP. aeruginosaPA14 is a clinical isolate that has become an important reference strain used by many researchers worldwide. LPS of PA14 has not been characterized fully, and hence, confusion about its phenotype exists in the literature. In the present study, we set out to characterize the O-specific antigen (OSA), the common polysaccharide antigen (CPA), and the core oligosaccharide produced by PA14. We present evidence that PA14 produces an LPS consisting of “very-long-chain” and some “short-chain” OSA belonging to the O19 serotype but is devoid of CPA and the uncapped core oligosaccharide epitope. These intrinsic defects in PA14 LPS were due to single-nucleotide polymorphisms (SNPs) in the genes that encode glycosyltransferases in the corresponding biosynthesis pathways. Since sugars in CPA and the uncapped core are receptors for different bacteriocins and pyocins, the lack of CPA and an intact core may contribute to the increased virulence of PA14. Restoring CPA production in PA14 was found to stimulate mature biofilm formation.


1997 ◽  
Vol 43 (4) ◽  
pp. 384-390 ◽  
Author(s):  
Alexander Gorkovenko ◽  
Jinwen Zhang ◽  
Richard A. Gross ◽  
Alfred L. Allen ◽  
David L. Kaplan

Strategies were investigated to modulate the side chain structure of emulsans formed by Acinetobacter calcoaceticus RAG-1. Analysis of emulsan fatty acid side chain groups by gas chromatography – mass spectrometry (GC–MS) revealed that by providing the exogenous n-alkanoic fatty acids 15:0, 16:0, and 17:0, emulsan analogs were formed with 53, 46, and 44 mol%, respectively, of fatty acid substituents with chain lengths equal to that of the carbon source. In contrast, the increase in emulsan fatty acids of chain lengths less than 15 or greater than 17 by providing corresponding shorter and longer chain length fatty acids as carbon sources was not substantial. When [1-13C]-labeled (99% enriched) palmitic acid was used as a carbon source along with acetate, analysis of m/z 75/14 and 87/88 isotopomer ratios by GC-MS indicated that 84 and 86% of the 16:0 and 16:1 (9-cis) side groups, respectively, were incorporated intact from the 16:0 carbon source. The percentage of 14-, 15-, 16-, 17-, and 18-carbon chain length fatty acid esters that were monounsaturated were 11, 26, 50, 70, and 85%, respectively. Based on the observed percentage of unsaturated chain length dependence and almost identical enrichment at C-1 of 16:0 and 16:1 (9-cis) side groups from [1-13C]-labeled experiments, it was concluded that desaturation of preformed n-alkanoic acids was the predominant mechanism of their formation. Further work established correlations between side chain structure and product emulsification specificity/activity, so that bioengineered emulsans with improved selectivity can now be formed.Key words: emulsan, Acinetobacter calcoaceticus RAG-1, fatty acids, direct incorporation, emulsification activity.


Sign in / Sign up

Export Citation Format

Share Document