Structure Optimization of Battery Module With a Parallel Multi-Channel Liquid Cooling Plate Based on Orthogonal Test

Author(s):  
Chaofeng Pan ◽  
Qiming Tang ◽  
Zhigang He ◽  
Limei Wang ◽  
Long Chen

Abstract In order to keep the power battery work within an ideal temperature range for the electric vehicle, the liquid cooling plate with parallel multi-channels is designed, and a three-dimensional thermal model of battery module with the liquid cooling plate is established. Subsequently, the effects of the cooling plate thickness and the cooling pipe thickness, channel number and coolant mass flow rate on the cooling performance of battery modules are analyzed. The results show that four parameters of the cooling plate have an important role in the thermal behavior of the liquid-cooled battery system. It is not good to improve the performance of the cooling system by changing only certain parameters. The four factors discussed above are optimized by using orthogonal test according to the univariate analysis. With the use of the orthogonal test, the optimization model obtained is obviously enhanced in the aspect of maximum temperature control and temperature uniformity of liquid-cooled battery module. Results show that the three-dimensional thermal analysis and orthogonal test method are compatible with optimal design of liquid-cooled battery modules.

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4187
Author(s):  
Jiabin Duan ◽  
Jiapei Zhao ◽  
Xinke Li ◽  
Satyam Panchal ◽  
Jinliang Yuan ◽  
...  

To ensure optimum working conditions for lithium-ion batteries, a numerical study is carried out for three-dimensional temperature distribution of a battery liquid cooling system in this work. The effect of channel size and inlet boundary conditions are evaluated on the temperature field of the battery modules. Based on the thermal behavior of discharging battery obtained experimental measurements, two temperature control strategies are proposed and studied. The results show that the channel width of the cooling plates has a great influence on the maximum temperature in the battery module. It is also revealed that increasing inlet water flow rate can significantly improve the heat transfer capacity of the battery thermal management system, while the relationship between them is not proportional. Lowering the inlet temperature can reduce the maximum temperature predicted in the battery module significantly. However, this will also lead to additional energy consumed by the cooling system. It is also found that the Scheme 5 among various temperature control strategies can ensure the battery pack working in the best temperature range in different depths of discharge. Compared with the traditional one with a given flow rate, the parasitic energy consumption in Scheme 5 can be reduced by around 80%.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8094
Author(s):  
Bichao Lin ◽  
Jiwen Cen ◽  
Fangming Jiang

It is important for the safety and good performance of a Li-ion battery module/pack to have an efficient thermal management system. In this paper, a battery thermal management system with a two-phase refrigerant circulated by a pump was developed. A battery module consisting of 240 18650-type Li-ion batteries was fabricated based on a finned-tube heat-exchanger structure. This structural design offers the potential to reduce the weight of the battery thermal management system. The cooling performance of the battery module was experimentally studied under different charge/discharge C-rates and with different refrigerant circulation pump operation frequencies. The results demonstrated the effectiveness of the cooling system. It was found that the refrigerant-based battery thermal management system could maintain the battery module maximum temperature under 38 °C and the temperature non-uniformity within 2.5 °C for the various operation conditions considered. The experimental results with 0.5 C charging and a US06 drive cycle showed that the thermal management system could reduce the maximum temperature difference in the battery module from an initial value of 4.5 °C to 2.6 °C, and from the initial 1.3 °C to 1.1 °C, respectively. In addition, the variable pump frequency mode was found to be effective at controlling the battery module, functioning at a desirable constant temperature and at the same time minimizing the pump work consumption.


2020 ◽  
Vol 10 (5) ◽  
pp. 1660
Author(s):  
Aihua Chu ◽  
Yinnan Yuan ◽  
Jianxin Zhu ◽  
Xiao Lu ◽  
Chenquan Zhou

High power cylindrical Ni-MH battery cells have a heavy heat load because of their high discharge rate and large equivalent internal resistance. This heavy heat load, together with an imbalanced flow in parallel liquid cooling systems, can lead to variances in the temperature of each cell in the entire battery pack, thereby reducing the life cycle of the battery pack. In this paper, a parallel-series combined liquid cooling system for a 288V Ni-MH battery pack was designed, and several parameters that influence the flow balance of the system by heat transfer and fluid dynamics were calculated. Then, a thermal-fluid simulation was executed with different parameters using StarCCM+ software, and the simulation results were validated by a battery pack temperature experiment on a bench and in a vehicle. The results indicate that the cell’s temperature and temperature differences can be kept within an ideal range. We also determined that within the battery power requirements and structural spacing limits, the total flow rate of the cooling liquid, the cross-sectional area ratio of the main pipe to the branch pipes, and the number of internal supporting walls in each branch pipe need to be large enough to minimize the cell’s maximum temperature and temperature differences.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2387
Author(s):  
Van-Thanh Ho ◽  
Kyoungsik Chang ◽  
Sang Wook Lee ◽  
Sung Han Kim

This paper presents a three-dimensional modeling approach to simulate the thermal performance of a Li-ion battery module for a new urban car. A single-battery cell and a 52.3 Ah Li-ion battery module were considered, and a Newman, Tiedemann, Gu, and Kim (NTGK) model was adopted for the electrochemical modeling based on input parameters from the discharge experiment. A thermal–electrochemical coupled method was established to provide insight into the temperature variations over time under various discharge conditions. The distribution temperature of a single-battery cell was predicted accurately. Additionally, in a 5C discharge condition without a cooling system, the temperature of the battery module reached 114 °C, and the temperature difference increased to 25 °C under a 5C discharging condition. This condition led to the activation of thermal runaway and the possibility of an explosion. However, the application of a reasonable fan circulation and position reduced the maximum temperature to 49.7 °C under the 5C discharge condition. Moreover, accurate prediction of the temperature difference between cell areas during operation allowed for a clear understanding and design of an appropriate fan system.


Author(s):  
Peng Wang ◽  
F. Patrick McCluskey ◽  
Avram Bar-Cohen

Rapid increases in the power ratings and continued miniaturization of power electronic semiconductor devices have pushed chip heat fluxes well beyond the range of conventional thermal management techniques. The heat flux of power electronic chips for hybrid electric vehicles is now at the level of 100 to 150W/cm2 and is projected to increase to 500 W/cm2 in next generation vehicles. Such heat fluxes lead to higher and less uniform IGBT chip temperature, significantly degrading the device performance and system reliability. Maintaining the maximum temperature below a specified limit, while isothermalizing the surface of the chip, have become critical issues for thermal management of power electronics. In this work, a hybrid cooling system design, which combines microchannel liquid cooling and thermoelectric solid-state cooling, is proposed for thermal management of a 10mm × 10mm IGBT chip. The microchannel heat sink is used for global cooling of the chip while the embedded thermo-electric cooler is employed for isothermalization of the chip. A detailed package level 3D thermal model is developed to explore the potential application of this concept, with an attention focused on isothermalization and temperature reduction of IGBT chip associated with variations in thermoelectric cooler sizes, thermoelectric materials, cooling system designs, and trench structures in the DBC substrate. It is found that a thin-film superlattice TEC can deliver a superior cooling performance by eliminating more than 90% of the temperature non-uniformity on 100∼200 W/cm2 IGBT chips.


2021 ◽  
Vol 6 (1) ◽  
pp. 12-19
Author(s):  
Choirul Anwar ◽  
Agus Suprayitno

Battery performance is affected by the problem of overheating which can cause mechanical damage to the battery and electronic components of the BMS (Battery Management System). With the need for an increase in battery charging time with fast capacity, the internal heat generated by the battery also increases so that the battery pack needs to be equipped with a cooling system. Currently, the cooling system in the battery pack uses a lot of cooling plate, cooling pipe, PCM (Phase Change Material) and cooling fluid. Combining cooling system design based on advantages and disadvantages to produce the best performance was tried using the cooling plate and PCM. The method used is to change the initial design of the battery pack without cooling to a cooling system by making a design and verifying the design. The process of thermal analysis is carried out in the process of charging the battery and removing the battery. The result of the research is the distribution of heat transfer that occurs during the battery charging process and the battery discharge is uniform and the temperature value obtained is the 43,2 °C battery discharge process in the main cooling plate component and the maximum temperature in the charging process is 57,6°C. at BMS. Cooling using a cooling plate and PCM for a closed system is maximized. Keywords: baterai Litium-Ion, Heat Sink, PCM


2021 ◽  
Author(s):  
James H. Page ◽  
Michele De Gennaro ◽  
Andreas Müller ◽  
Michael Kerschbaumer ◽  
Tobias Wellerdieck

2020 ◽  
Vol 56 (6) ◽  
pp. 2579-2602 ◽  
Author(s):  
Xiaolong Yang ◽  
Yongkang Duan ◽  
Xuning Feng ◽  
Tianyu Chen ◽  
Chengshan Xu ◽  
...  

Author(s):  
Zhiguo Tang ◽  
Qin Gao ◽  
Jie Li ◽  
Jianping Cheng

Abstract Battery thermal management (BTM) has an important significance for electronic vehicles to keep them operating in a reasonable temperature range and reduce local temperature differences. In this study, a novel structure of liquid cooling-based lithium-ion battery module with a variable contact area of heat-conductive blocks is proposed. Three-dimensional transient simulations are carried out to investigate the thermal performance of the proposed structure. The effects of block height, height gradient, and inlet velocity are discussed. The results indicate that simply increasing the height of heat-conductive blocks could have a negative effect on cooling performance and that a variable heat transfer area could efficiently improve the temperature uniformity of the battery module. In addition, the thermal performance of the proposed battery module is sensitive to inlet velocity, but the positive effect can be decreased when the velocity is adequately increased. The temperature difference (ΔT) of the battery module with a variable contact area can achieve below 4 °C, and its reduced percentage can be 47.7% compared with that of the module with a consistent contact area when the inlet velocity is 0.2 m/s.


Sign in / Sign up

Export Citation Format

Share Document