scholarly journals An optimal design of a flexible piping inspection robot

2021 ◽  
pp. 1-37
Author(s):  
Swaminath Venkateswaran ◽  
Damien Chablat ◽  
Pol Hamon

Abstract This article presents an optimization approach for the design of a piping inspection robot. A rigid bio-inspired piping inspection robot that moves like a caterpillar was designed and developed at LS2N, France. By the addition of tensegrity mechanisms between the motor modules, the mobile robot becomes flexible to pass through the bends. However, the existing motor units prove to be oversized for passing through pipe bends at 90°. Thus, three cascading optimization problems are presented in this article to determine the sizing of robot assembly that can overcome such pipe bends. The first problem deals with the identification of design parameters of the tensegrity mechanism based on static stability. Followed by that, in the second problem, the optimum design parameters of the robot modules are determined for the robot assembly without the presence of leg mechanisms. The third problem deals with the determination of the size of the leg mechanism for the results of the two previous optimization problems. A digital model of the optimized robot assembly is then realized using CAD software.

Author(s):  
Swaminath Venkateswaran ◽  
Damien Chablat ◽  
Pol Hamon

Abstract This article presents an optimization approach for the design of an inspection robot that can move inside variable diameter pipelines having bends and junctions. The inspection robot uses a mechanical design that mimics the locomotion of a caterpillar. The existing prototype developed at LS2N, France is a rigid model that makes it feasible for working only inside straight pipelines. By the addition of a tensegrity mechanism between motor units, the robot is made reconfigurable. However, the motor units used in the prototype are oversized to pass through pipe bends or junctions. An optimization approach is employed to determine the dimensions of motors and their associated leg mechanisms that can overcome such bends. Two optimization problems are defined and solved in this article. The first problem deals with the determination of motor sizing without leg mechanisms. The second problem deals with the determination of sizing of the leg mechanism with respect to the dimensions of motor units obtained from the first problem. A 3D model of the optimized robot design is then realized using CAD software.


2018 ◽  
Vol 13 (3) ◽  
pp. 72-76
Author(s):  
Гумар Булгариев ◽  
Gumar Bulgariev ◽  
Геннадий Пикмуллин ◽  
Gennadiy Pikmullin ◽  
Ильгиз Галиев ◽  
...  

At the present stage of development of the country’s agro-industrial complex, the technological process of surface tillage by combined soil-cultivating machines, simultaneously combining a number of operations in one pass through the field, causes the presence in their designs of the necessary set of various promising working organs. In view of the foregoing, a rotary soil ripper with a spiral-plate working member equipped with radially directed teeth and connected by means of rods with end flanges has been developed. Also, the researched ripper has the limits of penetration of the working element in the form of flat discs equipped with flanges and the radial stop have the ability to rotate around their axes independently of the ripper shaft. An analytical study of the working units of this ripper was carried out from the point of view of the influence of their size and teeth on the process of interaction with the soil, on the basis of which some of their parameters were determined. In conclusion, it was concluded that the analytical equations obtained allow us to justify the choice of the most important design parameters of the proposed new design and design a toothed rotary working device that reduces to constructive implementation after calculating their basic dimensions.


Author(s):  
Coralie Germain ◽  
Stéphane Caro ◽  
Sébastien Briot ◽  
Philippe Wenger

This paper deals with the design optimization of the IRSBot-2 based on an optimized test trajectory for fast pick and place operations. The IRSBot-2 is a two degree-of-freedom translational parallel manipulator dedicated to fast and accurate pick-and-place operations. First, an optimization problem is formulated to determine the optimal test trajectory. This problem aims at finding the path defined with s-curves and the time trajectory that minimize the cycle time while the maximum acceleration of the moving platform remains lower than 20 G and the time trajectory functions are C2 continuous. Then, two design optimization problems are formulated to find the optimal design parameters of the IRSBot-2 based on the previous optimal test trajectory. These two problems are formulated so that they can be solved in cascade. The first problem aims to define the design parameters that affect the geometric and kinematic performances of the manipulator. The second problem is about the determination of the remaining parameters by considering elastostatic and dynamic performances. Finally, the optimal design parameters are given and will be used for the realization of an industrial prototype of the IRSBot-2.


2004 ◽  
Vol 126 (3) ◽  
pp. 898-905 ◽  
Author(s):  
Dan Weinstock ◽  
Joseph Appelbaum

The optimal design of stationary photovoltaic and thermal collectors in a solar field, taking into account shading and masking effects, may be based on several criteria: maximum incident energy on collector plane from a given field, minimum field area for given incident energy, minimum cost per unit energy, minimum plant cost, maximum energy per unit collector area or other objectives. These design problems may be formulated as optimization problems with objective functions and sets of constraints (equality and inequality) for which mathematical optimization techniques may be applied. This article deals with obtaining the field design parameters (optimal number of rows, distance between collector rows, collector height and collector inclination angle) that produce maximum annual energy from a given field. A second problem is determination of the minimum field area (length and width) and field design parameters that produce a given required annual energy. The third problem is determination of the optimal field design parameters for obtaining maximum energy per unit collector area from a given field. The results of these optimal designs are compared to a recommended approach of the Israeli Institute of Standards (IIS) in which the solar field design result in negligible shading. An increase in energy of about 20% for a fixed field area and a decrease in field area of about 15% for a given annual incident energy, respectively, may be obtained using the approach formulated in the present article compared to the IIS approach.


Author(s):  
J. Cole Smith ◽  
Alfonso Ortega ◽  
Colleen M. Gabel ◽  
Dale Henderson

We consider a problem arising in designing Compact Thermal Models (CTMs) for the purpose of simulating the thermal response of a package. CTMs are often preferred over more detailed models due to their minimal representation and the reduced computations required to obtain accurate nodal temperature predictions under hypothetical scenarios. The quality of CTM performance depends on the determination of an appropriate set of parameters that drive the model. The subject of this paper is a heuristic nonlinear optimization approach to computing the set of CTM parameters that best predicts the thermal response of a package. Our algorithm solves a series of one-dimensional nonconvex optimization problems to obtain these parameters, exploiting the special structure of the CTM in order to improve both the execution time of the algorithm and the quality of the CTM performance. We conclude the paper by providing a brief array of computational results as a proof of concept, along with several possible future research extensions.


2000 ◽  
Vol 39 (05) ◽  
pp. 121-126 ◽  
Author(s):  
R. Werz ◽  
P. Reuland

Summary Aim of the study was to find out wether there is a common stop of growth of mandibular bone, so that no individual determination of the optimal time for surgery in patients with asymmetric mandibular bone growth is needed. As there are no epiphyseal plates in the mandibular bone, stop of growth cannot be determined on X-ray films. Methods: Bone scans of 731 patients [687 patients (324 male, 363 female) under 39 y for exact determination of end of growth and 44 (21 male, 23 female) patients over 40 y for evaluation of nongrowth dependant differences in tracer uptake] were reviewed for the study. All the patients were examined 3 hours after injection of 99mTc-DPD. Tracer uptake was measured by region of interest technique in different points of the mandibular bone and in several epiphyseal plates of extremities. Results: Tracer uptake in different epiphyseal plates of the extremities shows strong variation with age and good correlation with reported data of bone growth and closure of the epiphyseal plates. The relative maximum of bone activity is smaller in mandibular bone than in epiphyseal plates, which show well defined peaks, ending at 15-18 years in females and at 18-21 years in males. In contrast, mandibular bone shows no well defined end of growing but a gradually reduction of bone activity which remains higher than bone activity in epiphyseal plates over several years. Conclusion: No well defined end of growth of mandibular bone exists. The optimal age for surgery of asymmetric mandibular bone growth is not before the middle of the third decade of life, bone scans performed earlier for determination of bone growth can be omitted. Bone scans performed at the middle of the third decade of life help to optimize the time of surgical intervention.


2019 ◽  
Vol 7 (1) ◽  
pp. 9-20
Author(s):  
Inna Yeung

Choice of profession is a social phenomenon that every person has to face in life. Numerous studies convince us that not only the well-being of a person depends on the chosen work, but also his attitude to himself and life in general, therefore, the right and timely professional choice is very important. Research about factors of career self-determination of students of higher education institutions in Ukraine shows that self-determination is an important factor in the socialization of young person, and the factors that determine students' career choices become an actual problem of nowadays. The present study involved full-time and part-time students of Institute of Philology and Mass Communications of Open International University of Human Development "Ukraine" in order to examine the factors of career self-determination of students of higher education institutions (N=189). Diagnostic factors of career self-determination of students studying in the third and fourth year were carried out using the author's questionnaire. Processing of obtained data was carried out using the Excel 2010 program; factorial and comparative analysis were applied. Results of the study showed that initial stage of career self-determination falls down on the third and fourth studying year at the university, when an image of future career and career orientations begin to form. At the same time, the content of career self-determination in this period is contradictory and uncertain, therefore, the implementation of pedagogical support of this process among students is effective.


2020 ◽  
Vol 92 (6) ◽  
pp. 13-25
Author(s):  
Vl.I. KOLCHUNOV ◽  
◽  
A.I. DEMYANOV ◽  
M.M. MIHAILOV ◽  
◽  
...  

The article offers a method and program for experimental studies of reinforced concrete structures with cross-shaped spatial crack under torsion with bending, the main purpose of which is to check the design assumptions and experimental determination of the design parameters of the proposed calculation method. The conducted experimental studies provide an opportunity to test the proposed calculation apparatus and clarify the regularities for determining deflections, angles of rotation of extreme sections, and stresses in the compressed zone of concrete. For analysis, the article presents a typical experimental scheme for the formation and development of cracks in the form of a sweep, as well as characteristic graphs of the dependence of the angles of rotation of end sections.


Author(s):  
E.A. Derkach , O.I. Guseva

Objectives: to compare the accuracy of equations F.P. Hadlock and computer programs by V.N. Demidov in determining gestational age and fetal weight in the third trimester of gestation. Materials: 328 patients in terms 36–42 weeks of gestation are examined. Ultrasonography was performed in 0–5 days prior to childbirth. Results: it is established that the average mistake in determination of term of pregnancy when using the equation of F.P. Hadlock made 12,5 days, the computer program of V.N. Demidov – 4,4 days (distinction 2,8 times). The mistake within 4 days, when using the equation of F.P. Hadlock has met on average in 23,1 % of observations, the computer program of V.N. Demidov — 65,9 % (difference in 2,9 times). The mistake more than 10 days, took place respectively in 51,7 and 8,2 % (distinction by 6,3 times). At a comparative assessment of size of a mistake in determination of fetal mass it is established that when using the equation of F.P. Hadlock it has averaged 281,0 g, at application of the computer program of V.N. Demidov — 182,5 g (distinction of 54 %). The small mistake in the mass of a fetus which isn't exceeding 200 g at application of the equation of F.P. Hadlock has met in 48,1 % of cases and the computer program of V.N. Demidov — 64,0 % (distinction of 33,1 %). The mistake exceeding 500 g has been stated in 18 % (F.P. Hadlock) and 4,3 % (V.N. Demidov) respectively (distinction 4,2 times). Conclusions: the computer program of V.N. Demidov has high precision in determination of term of a gestation and mass of a fetus in the III pregnancy.


Author(s):  
Chakravarthi Ram-Prasad

The Introduction outlines the various chapters. It then situates the question of ‘body’ in the modern Western philosophical tradition following Descartes, and argues that this leaves subsequent responses to come under one of three options: metaphysical dualism of body and subject; any anti-dualist reductionism; or the overcoming of the divide. Describing the Phenomenology of Merleau-Ponty as a potent example of the third strategy, the Introduction then suggests his philosophy will function as foil to the ecological phenomenology developed and presented in the book. Moreover, one approach within the Western Phenomenological tradition, of treating phenomenology as a methodology for the clarification of experience (rather than the means to the determination of an ontology of the subject) is compared to the approach in this book. Since classical India, while understanding dualism, did not confront the challenge of Descartes (for better or for worse), its treatment of body follows a different trajectory.


Sign in / Sign up

Export Citation Format

Share Document