A Comparison Between Air and In-Service Welding on Oxygen Concentration and Microinclusions in E7018-1 Weld Metal

Author(s):  
Gustavo José Suto de Souza ◽  
Antonio do Nascimento Silva Alves ◽  
Giovani Dalpiaz ◽  
Jaime Casanova ◽  
Sergio Brandi

Abstract In the maintenance of in-service pipelines, the use of covered electrodes is usual due to several factors such as the flexibility of welding in hard-to-reach places and its low cost. During in-service welding of pipelines, the line remains in operation, which implies more rigorous temperature gradients that can result in microstructures more susceptible to failure. The objective of this work is to relate the welding current and cooling conditions, commonly used in-service welding, with the oxygen content and the volumetric fraction of microinclusions. In this step, the effect on the oxygen content and the volumetric fraction of microinclusions are analyzed based on experimental results using the technique of factorial experiments. Bead-on-plate samples were welded under two cooling conditions, air and cooling with water, and two nominal welding currents, 86 A and 98 A. The increase in oxygen content was observed with increasing welding current and with the cooling rate. In addition, the more rigorous cooling rate reduced the mean microinclusions size, which can suppress the formation of acicular ferrite and, consequently, reduce the toughness and the ultimate stress limit of weld metal.

2013 ◽  
Vol 652-654 ◽  
pp. 1092-1095
Author(s):  
H.S. Liu ◽  
Lin Zhang ◽  
Xin Bo He ◽  
Xuan Hui Qu ◽  
Zhou Li ◽  
...  

The precipitation behavior of γ' phase after continuous solution cooling tests was examined in superalloy FGH96. The results indicate that, with the increase of cooling rate, the mean diameter of secondary γ' precipitates decreases as well as the shape changes from cuboid to spherical. Either under water cooling or cooling at 10 °C/min and 25 °C/min, the highest strength can not be obtained.


2018 ◽  
Vol 777 ◽  
pp. 339-343
Author(s):  
Pramote Poonayom ◽  
Kittipong Kimapong

A shielded metal arc welding (SMAW) using various covered electrodes applied to produce a hard-faced weld metal on FC25 gray cast iron bare surface. It found that all welding parameters such as 3 electrode types and welding currents of 90-130 A were able to produce a sound weld metal without a defect that could deteriorate the joint strength. The white cast layer thickness that was formed at the interface between the weld metal and the base metal was increased when increasing in the welding current and the alloying element in the electrode. Impact strength tended to increase when the alloying element such as chromium (Cr), molybdenum (Mo), and manganese (Mn) was existed, and it showed the maximum impact strength when H600 electrode was applied. In a comparison of microstructure characteristics of the joints, the joint that showed the maximum impact strength had the formation of fine needle-like grain in the weld.


2018 ◽  
Vol 777 ◽  
pp. 344-349
Author(s):  
Surat Triwanapong ◽  
Kittipong Kimapong

The butt joint of dissimilar AISI304/AISI1015 steels was produced by a Shielded Metal Arc Welding (SMAW) with 3 types of the covered electrodes and the welding current of 80-120 A. The investigation of joint properties for the impact strength, the hardness, and the microstructure, was performed. The SMAW butt joint that was welded by the E312 covered electrode and 100A welding current showed the highest impact strength of 112 J. The chromium was the important reinforced element affected to increase in the hardness and the impact strength of the joint by forming and dispersing the chromium carbide in the weld metals. Interface structure of the carbon steel/the weld metal clearly showed a small combined area of the metals in opposition to the interface structure of the stainless steel/ the weld metal which had a large combined area of the metals.


Author(s):  
David J. Stone ◽  
Boian T. Alexandrov ◽  
Jorge A. Penso

Type 410 stainless steel is used in petro-chemical refineries for its high resistance to halide stress corrosion cracking, sulfide corrosion cracking, and sulfur attack at elevated temperatures. Along with its adequate corrosion resistance 410SS also exhibits low cost and hardenability making it an ideal material for hydro-processing applications. Problems related to meeting toughness and hardness code requirements within the weld metal and heat effected zone (HAZ) have been experienced during fabrication of 410SS welded components. The loss of toughness has been related to excessive amounts of delta ferrite in the weld metal and HAZ. The objective of this study was to quantify the effect of cooling rate and alloying compositions within ASTM and AWS specifications for 410SS on delta ferrite formation. C, Cr, Ni, and Mo, were used as factors in a model-based design of experiment (DOE) within CALPHAD based software DICTRA™ to simulate the effects of composition and cooling rate on delta ferrite formation. Based on the DOE results, a predictive model for quantification of retained delta ferrite in 410SS welds was developed along with evidence for cooling rate effect on retained delta ferrite. Optical metallography was also used to demonstrate possible ferrite content within the 410 composition range.


2018 ◽  
Vol 116 (1) ◽  
pp. 110
Author(s):  
Lixiong Shao ◽  
Jiang Diao ◽  
Wang Zhou ◽  
Tao Zhang ◽  
Bing Xie

The growth behaviour of spinel crystals in vanadium slag with high Cr2O3 content was investigated and clarified by statistical analyses based on the Crystal Size Distribution (CSD) theory. The results indicate that low cooling rate and Cr2O3 content benefit the growth of spinel crystals. The chromium spinel crystals firstly precipitated and then acted as the heterogeneous nuclei of vanadium and titanium spinel crystals. The growth mechanisms of the spinel crystals at the cooling rate of 5 K/min consist two regimes: firstly, nucleation control in the temperature range of 1873 to 1773 K, in which the shapes of CSD curves are asymptotic; secondly, surface and supply control within the temperature range of 1773 to 1473 K, in which the shapes of CSD curves are lognormal. The mean diameter of spinel crystals increases from 3.97 to 52.21 µm with the decrease of temperature from 1873 to 1473 K.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4675
Author(s):  
Ayat-allah Bouramdane ◽  
Alexis Tantet ◽  
Philippe Drobinski

In this study, we examine how Battery Storage (BES) and Thermal Storage (TES) combined with solar Photovoltaic (PV) and Concentrated Solar Power (CSP) technologies with an increased storage duration and rental cost together with diversification would influence the Moroccan mix and to what extent the variability (i.e., adequacy risk) can be reduced; this is done using recent (2013) cost data and under various penetration scenarios. To do this, we use MERRA-2 climate reanalysis to simulate hourly demand and capacity factors (CFs) of wind, solar PV and CSP without and with increasing storage capabilities—as defined by the CSP Solar Multiple (SM) and PV Inverter Loading Ratio (ILR). We adjust these time series to observations for the four Moroccan electrical zones over the year 2018. Our objective is to maximize the renewable (RE) penetration and minimize the imbalances between RE production and consumption considering three optimization strategies. We analyze mixes along Pareto fronts using the Mean-Variance Portfolio approach—implemented in the E4CLIM model—in which we add a maximum-cost constraint to take into account the different rental costs of wind, PV and CSP. We propose a method to calculate the rental cost of storage and production technologies taking into account the constraints on storage associated with the increase of SM and ILR in the added PV-BES and CSP-TES modules, keeping the mean solar CFs fixed. We perform some load bands-reduction diagnostics to assess the reliability benefits provided by each RE technology. We find that, at low penetrations, the maximum-cost budget is not reached because a small capacity is needed. The higher the ILR for PV, the larger the share of PV in the mix compared to wind and CSP without storage is removed completely. Between PV-BES and CSP-TES, the latter is preferred as it has larger storage capacity and thus stronger impact in reducing the adequacy risk. As additional BES are installed, more than TES, PV-BES is favored. At high penetrations, optimal mixes are impacted by cost, the more so as CSP (resp., PV) with high SM (resp., ILR) are installed. Wind is preferably installed due to its high mean CF compared to cost, followed by either PV-BES or CSP/CSP-TES. Scenarios without or with medium storage capacity favor CSP/CSP-TES, while high storage duration scenarios are dominated by low-cost PV-BES. However, scenarios ignoring the storage cost and constraints provide more weight to PV-BES whatever the penetration level. We also show that significant reduction of RE variability can only be achieved through geographical diversification. Technological complementarity may only help to reduce the variance when PV and CSP are both installed without or with a small amount of storage. However, the diversification effect is slightly smaller when the SM and ILR are increased and the covariances are reduced as well since mixes become less diversified.


2021 ◽  
Vol 28 ◽  
pp. 107327482110099
Author(s):  
Abdosaleh Jafari ◽  
Peyman Mehdi Alamdarloo ◽  
Mehdi Dehghani ◽  
Peivand Bastani ◽  
Ramin Ravangard

Among cancers, colorectal cancer is the third most common cancer in the world and the fourth leading cause of cancer deaths worldwide. Some studies have shown that the incidence of colorectal cancer is increasing in Iran and in Fars province. The present study aimed to determine the economic burden of colorectal cancer in patients referred to the referral centers affiliated to Iran, Shiraz University of Medical Sciences in 2019 from the patients’ perspective. This is a partial economic evaluation and a cost-of-illness study conducted cross-sectionally in 2019. All the patients with colorectal cancer who had been referred to the referral centers affiliated to Iran, Shiraz University of Medical Sciences, and had medical records were studied through the census method (N = 96). A researcher-made data collection form was used to collect the cost data. The prevalence-based and bottom-up approaches were also used in this study. The human capital approach was applied to calculate indirect costs. The mean annual cost per patient with colorectal cancer in the present study was $10930.98 purchasing power parity (PPP) (equivalent to 5745.29 USD), the main part of which was the medical direct costs (74.86%). Also, among the medical direct costs per patient, the highest were those of surgeries (41.7%). In addition, the mean annual cost per patient with colorectal cancer in the country was $ 116917762 PPP (equivalent to 61451621.84 USD) in 2019. Regarding the considerable economic burden of colorectal cancer and in order to reduce the costs, these suggestions can be made: increasing the number of specialized beds through the cooperation of health donors, establishing free or low-cost accommodation centers for patients and their companions near the medical centers, using the Internet and cyberspace technologies to follow up the treatment of patients, and increasing insurance coverage and government drug subsidies on drug purchase.


2012 ◽  
Vol 730-732 ◽  
pp. 883-888 ◽  
Author(s):  
Daniel J. Moutinho ◽  
Laércio G. Gomes ◽  
Otávio L. Rocha ◽  
Ivaldo L. Ferreira ◽  
Amauri Garcia

Solidification of ternary Al-Cu-Si alloys begins with the development of a complex dendritic network typified by primary (λ1) and secondary (λ2) dendrite arm spacings which depend on the chemical composition of the alloy and on the casting thermal parameters such as the growth rate and the cooling rate. These thermal parameters control the scale of dendritic arms, the size and distribution of porosity and intermetallic particles in the casting. In this paper, λ1and λ2were correlated with experimental thermal parameters i.e., the tip growth rate and the tip cooling rate. The porosity profile along the casting length has also been experimentally determined. The volumetric fraction of pores increase with the increase in alloying Si and with the increase in Fe concentration at the regions close to the casting cooled surface.


2012 ◽  
Vol 524-527 ◽  
pp. 1976-1979
Author(s):  
Yi Luo ◽  
Jin Ming Peng

Mechanical properties of non-quenched prehardened (NQP) steel air cooled and sand cooled after forged were tested and their microstructure was investigated by optical microscopy and transmission electronic microscopy(TEM). The results show that mechanical properties of the NQP steel are similar at both cooling conditions, and their microstructure is bainite, whose fine structure is main bainite ferrite laths, retained austenite films, retained austenite islands and their transformation products. Bainite ferrite laths of the NQP steel air cooled are narrower than that sand cooled, while more retained austenite islands exist in latter.


2018 ◽  
Vol 115 (4) ◽  
pp. 410
Author(s):  
Fengyu Song ◽  
Yanmei Li ◽  
Ping Wang ◽  
Fuxian Zhu

Three weld metals with different oxygen contents were developed. The influence of oxygen contents on the microstructure and impact toughness of weld metal was investigated through high heat input welding tests. The results showed that a large number of fine inclusions were formed and distributed randomly in the weld metal with oxygen content of 500 ppm under the heat input condition of 341 kJ/cm. Substantial cross interlocked acicular ferritic grains were induced to generate in the vicinity of the inclusions, primarily leading to the high impact toughness at low temperature for the weld metal. With the increase of oxygen content, the number of fine inclusions distributed in the weld metal increased and the grain size of intragranular acicular ferrites decreased, which enhanced the impact toughness of the weld metal. Nevertheless, a further increase of oxygen content would contribute to a great diminution of the austenitic grain size. Following that the fraction of grain boundary and the start temperature of transformation increased, which facilitated the abundant formation of pro-eutectoid ferrites and resulted in a deteriorative impact toughness of the weld metal.


Sign in / Sign up

Export Citation Format

Share Document