Study on lifted flame stabilization under different background pressures

Author(s):  
Qiushi Qin ◽  
Zhijun Wu ◽  
Alessandro Ferrari

Abstract A numerical experimental investigation is presented for a steady methane lifted-flame and a non-reaction jet flow in a co-flow of hot combustion products from lean premixed air/hydrogen combustion. A pressurized vitiated co-flow burner has been employed to study the methane lifted flame and non-reaction jet flow under different background pressures. The lift-off height has been measured with a high-speed camera, and the central jet flow velocity has been measured by means of a Schlieren imaging system. The experimental results show that the lift-off height decreases for an increment in the background pressure and in the co-flow temperature. As far as the experimental tests on the non-reaction jet flow is concerned, the jet velocity becomes extinct faster as the background pressure rises. The evolution of the jet velocity has been proved to be another important factor that affects the lift-off height under different background pressures, in addition to the fuel autoignition delay. The simulation data led with a RANS/PDF model show that an increment in the background pressure makes the temperatures increase and induces a brighter yellow part of lifted flame, which leads to more soot production. This proves that the flame is not completely premixed. On the other hand, the Schlieren images of a non-reaction jet flow highlight that the flame is partially premixed, since the edge of the jet is not well defined, as the jet penetration increases with time.

Author(s):  
Arman Ahamed Subash ◽  
Ronald Whiddon ◽  
Robert Collin ◽  
Marcus Aldén ◽  
Atanu Kundu ◽  
...  

Experiments were performed on the central pilot body (RPL-rich-pilot-lean) of Siemens prototype 4th generation DLE burner to investigate the flame behavior at atmospheric pressure condition when varying equivalence ratio, residence time and co-flow temperature. The flame at the RPL burner exit was investigated applying OH planar laser-induced fluorescence (PLIF) and high-speed chemiluminescence imaging. The results from chemiluminescence imaging and OH PLIF show that the size and shape of the flame are clearly affected by the variation in operating conditions. For both preheated and non-preheated co-flow cases, at lean equivalence ratios combustion starts early inside the burner and primary combustion comes to near completion inside the burner if residence time permits. For rich conditions, the unburnt fuel escapes out through the burner exit along with primary combustion products and combustion subsequently restarts downstream the burner at leaner condition and in a diffuse-like manner. For preheated co-flow, most of the operating conditions yield similar OH PLIF distributions and the flame is stabilizing at approximately the same spatial positions. It reveals the importance of the preheating co-flow for flame stabilization. Flame instabilities were observed and Proper Orthogonal Decomposition (POD) is applied to time resolved chemiluminescence data to demonstrate how the flame is oscillating. Preheating has strong influence on the oscillation frequency. Additionally, combustion emissions were analyzed to observe the effect on NOX level for variation in operating conditions.


Author(s):  
T. O. Mohieldin ◽  
S. K. Chaturvedi

Abstract This work summarizes results for a three cylinder fuel injector that has been adopted as a model for investigating combustion phenomenon in the 8-Foot High Temperature Tunnel (HTT) at NASA Langley Research Center. The primary objective here is to understand the flame lift-off phenomenon in the three cylinder fuel injector geometry in two-dimensions. Three chemistry models, namely fast chemistry, one-step kinetics and two-step kinetics are employed in conjunction with a computational fluid dynamics code to analyze the flame structure and flame lift-off characteristics downstream of the fuel injector. Effects of fuel jet velocity and chemistry model on the flame lift-off phenomenon from the injector surface are analyzed by considering simultaneously the combined convection (outside the cylinders) and conduction (inside the cylinders). Results indicate that as the fuel jet velocity is increased, the flame is transformed from a wrap around configuration to a clearly lifted flame configuration. Of the three chemistry models considered in the present study, only the two-step chemistry model predicts a clearly lifted flame. The ability of the CFD code to predict lifted flame is important since a slightly lifted but stable flame is of paramount importance to the operation of the combustor.


2008 ◽  
Author(s):  
K. A. Ahmed ◽  
D. J. Forliti

Flame Stabilization in a high-speed premixed environment requires the presence of a mechanism to stabilize the flame. Bluff bodies or geometrical flame holders introduce a recirculation zone that anchor the flame. The current study considers the influence of equivalence ratio and the boundary layer state at the trailing edge of the flame holder on the flowfield and combustion characteristics. It was found that the recirculation zone is shortened as the equivalence ratio increases towards unity. A secondary shear region emerges downstream of the recirculation zone and is caused by the accelerated low-density combustion products. The emergence of the secondary shear region moves upstream with increasing equivalence ratio. Tripping the boundary layer causes a dramatic reduction in the length of the recirculation zone, and the secondary shear region is greatly augmented. Visualizations show that tripping the boundary layer resulted in a greatly disturbed flame near the trailing edge and large flame scales. Flowfield measurements suggest that the heat release is increased by approximately 50% when the boundary layer tripped.


Author(s):  
M. Assad ◽  
V. V. Grushevski ◽  
O. G. Penyazkov ◽  
I. N. Tarasenko

The concentration of 16 polycyclic aromatic hydrocarbons (PAHs) in the gasoline combustion products emitted into the atmosphere by internal combustion engines (ICE) has been measured using the gas chromatography method. The concentrations of PAHs in the exhaust gases sampled behind a catalytic converter has been determined when the ICE operates in five modes: idle mode, high speed mode, load mode, ICE cold start mode (engine warm-up) and transient mode. Using 92 RON, 95 RON and 98 RON gasoline the effect of the octane number of gasoline on the PAHs content in the exhaust gases has been revealed. The concentration of the most carcinogenic component (benzo(α)pyrene) in the exhaust gases behind a catalytic converter significantly exceeds a reference value of benzo(α)pyrene in the atmospheric air established by the WHO and the EU for ICE in the load mode.


Author(s):  
Francisco Lamas ◽  
Miguel A. M. Ramirez ◽  
Antonio Carlos Fernandes

Flow Induced Motions are always an important subject during both design and operational phases of an offshore platform life. These motions could significantly affect the performance of the platform, including its mooring and oil production systems. These kind of analyses are performed using basically two different approaches: experimental tests with reduced models and, more recently, with Computational Fluid Dynamics (CFD) dynamic analysis. The main objective of this work is to present a new approach, based on an analytical methodology using static CFD analyses to estimate the response on yaw motions of a Tension Leg Wellhead Platform on one of the several types of motions that can be classified as flow-induced motions, known as galloping. The first step is to review the equations that govern the yaw motions of an ocean platform when subjected to currents from different angles of attack. The yaw moment coefficients will be obtained using CFD steady-state analysis, on which the yaw moments will be calculated for several angles of attack, placed around the central angle where the analysis is being carried out. Having the force coefficients plotted against the angle values, we can adjust a polynomial curve around each analysis point in order to evaluate the amplitude of the yaw motion using a limit cycle approach. Other properties of the system which are flow-dependent, such as damping and added mass, will also be estimated using CFD. The last part of this work consists in comparing the analytical results with experimental results obtained at the LOC/COPPE-UFRJ laboratory facilities.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 137
Author(s):  
Artur Andrearczyk ◽  
Bartlomiej Konieczny ◽  
Jerzy Sokołowski

This paper describes a novel method for the experimental validation of numerically optimised turbomachinery components. In the field of additive manufacturing, numerical models still need to be improved, especially with the experimental data. The paper presents the operational characteristics of a compressor wheel, measured during experimental research. The validation process included conducting a computational flow analysis and experimental tests of two compressor wheels: The aluminium wheel and the 3D printed wheel (made of a polymer material). The chosen manufacturing technology and the results obtained made it possible to determine the speed range in which the operation of the tested machine is stable. In addition, dynamic destructive tests were performed on the polymer disc and their results were compared with the results of the strength analysis. The tests were carried out at high rotational speeds (up to 120,000 rpm). The results of the research described above have proven the utility of this technology in the research and development of high-speed turbomachines operating at speeds up to 90,000 rpm. The research results obtained show that the technology used is suitable for multi-variant optimization of the tested machine part. This work has also contributed to the further development of numerical models.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Christoph A. Schmalhofer ◽  
Peter Griebel ◽  
Manfred Aigner

The use of highly reactive hydrogen-rich fuels in lean premixed combustion systems strongly affects the operability of stationary gas turbines (GT) resulting in higher autoignition and flashback risks. The present study investigates the autoignition behavior and ignition kernel evolution of hydrogen–nitrogen fuel mixtures in an inline co-flow injector configuration at relevant reheat combustor operating conditions. High-speed luminosity and particle image velocimetry (PIV) measurements in an optically accessible reheat combustor are employed. Autoignition and flame stabilization limits strongly depend on temperatures of vitiated air and carrier preheating. Higher hydrogen content significantly promotes the formation and development of different types of autoignition kernels: More autoignition kernels evolve with higher hydrogen content showing the promoting effect of equivalence ratio on local ignition events. Autoignition kernels develop downstream a certain distance from the injector, indicating the influence of ignition delay on kernel development. The development of autoignition kernels is linked to the shear layer development derived from global experimental conditions.


2014 ◽  
Vol 129 (S1) ◽  
pp. S45-S50 ◽  
Author(s):  
J H Kim ◽  
J Rimmer ◽  
N Mrad ◽  
S Ahmadzada ◽  
R J Harvey

AbstractObjective:This study investigated the effect of Betadine on ciliated human respiratory epithelial cells.Methods:Epithelial cells from human sinonasal mucosa were cultured at the air–liquid interface. The cultures were tested with Hanks' balanced salt solution containing 10 mM HEPES (control), 100 µM ATP (positive control), 5 per cent Betadine or 10 per cent Betadine (clinical dose). Ciliary beat frequency was analysed using a high-speed camera on a computer imaging system.Results:Undiluted 10 per cent Betadine (n = 6) decreased the proportion of actively beating cilia over 1 minute (p < 0.01). Ciliary beat frequency decreased from 11.15 ± 4.64 Hz to no detectable activity. The result was similar with 5 per cent Betadine (n = 7), with no significant difference compared with the 10 per cent solution findings.Conclusion:Betadine, at either 5 and 10 per cent, was ciliotoxic. Caution should be applied to the use of topical Betadine solution on the respiratory mucosal surface.


Sign in / Sign up

Export Citation Format

Share Document