Large Combined Cycles for Utilities

1970 ◽  
Author(s):  
F. W. L. Hubert ◽  
H. J. Meima ◽  
A. R. J. Timmermans

Together with rapid development of the gas turbine technology a number of combined cycle arrangements have been proposed in literature. Characteristics of such installations are different from those of the installations normally used for similar application. The purpose of this paper is to determine how these characteristics compare in the case of a large utility power plant for a Municipal Electric Power Authority in the Netherlands. Factors as plant efficiency, fuel cost, investment and capital interest may differ from case to case and have to be reconsidered taking into account site location and economic factors.

1980 ◽  
Author(s):  
J. Jermanok ◽  
R. E. Keith ◽  
E. F. Backhaus

A new 37-MW, single-shaft gas turbine power plant has been designed for electric power generation, for use in either simple-cycle or combined-cycle applications. This paper describes the design features, instrumentation, installation, test, and initial operation.


Author(s):  
R. Chacartegui ◽  
D. Sa´nchez ◽  
F. Jime´nez-Espadafor ◽  
A. Mun˜oz ◽  
T. Sa´nchez

The development of high efficiency solar power plants based on gas turbine technology presents two problems, both of them directly associated with the solar power plant receiver design and the power plant size: lower turbine intake temperature and higher pressure drops in heat exchangers than in a conventional gas turbine. To partially solve these problems, different configurations of combined cycles composed of a closed cycle carbon dioxide gas turbine as topping cycle have been analyzed. The main advantage of the Brayton carbon dioxide cycle is its high net shaft work to expansion work ratio, in the range of 0.7–0.85 at supercritical compressor intake pressures, which is very close to that of the Rankine cycle. This feature will reduce the negative effects of pressure drops and will be also very interesting for cycles with moderate turbine inlet temperature (800–1000 K). Intercooling and reheat options are also considered. Furthermore, different working fluids have been analyzed for the bottoming cycle, seeking the best performance of the combined cycle in the ranges of temperatures considered.


2010 ◽  
Vol 132 (12) ◽  
pp. 57-57
Author(s):  
Lee S. Langston

This article presents an overview of gas turbine combined cycle (CCGT) power plants. Modern CCGT power plants are producing electric power as high as half a gigawatt with thermal efficiencies approaching the 60% mark. In a CCGT power plant, the gas turbine is the key player, driving an electrical generator. Heat from the hot gas turbine exhaust is recovered in a heat recovery steam generator, to generate steam, which drives a steam turbine to generate more electrical power. Thus, it is a combined power plant burning one unit of fuel to supply two sources of electrical power. Most of these CCGT plants burn natural gas, which has the lowest carbon content of any other hydrocarbon fuel. Their near 60% thermal efficiencies lower fuel costs by almost half compared to other gas-fired power plants. Their installed capital cost is the lowest in the electric power industry. Moreover, environmental permits, necessary for new plant construction, are much easier to obtain for CCGT power plants.


1978 ◽  
Author(s):  
S. Moskowitz ◽  
G. Weth

The combination of pressurized fluidized bed (PFB) technology and the gas turbine - steam turbine combined-cycle power system offer a unique opportunity for the production of electric power at increased plant efficiency from the direct combustion of high sulfur coal and that is environmentally acceptable without stack gas cleanup. The concept offers the prospect of earlier commercialization than those systems requiring gasification or liquefication of coal to clean fels. This paper presents the design of a 500-MW commercial powerplant prepared in conjunction with the U.S. Department of Energy sponsored program for the design, construction, and operation of a coal-fired PFB/turbine electric pilot plant. The powerplant approach develops over 60 percent of the plant capacity by multiple gas turbine gas turbine-generators and the balance of the capacity by a steam turbine-generator. The paper describes the fluid bed process selection of an air heater cycle. With two-thirds of the compressor discharge air indirectly heated within an in-bed gas-to-air heat exchanger and one-third of the compressor air involved in the combustion process, technology requirements for hot gas cleanup and turbine protection are minimized. This approach, which offers a coal-pile-to-busbar plant efficiency of over 40 percent is superior to other concepts and contemporary plants in terms of plant arrangement flexibility, part-load performance, power availability, and provides a low risk in development toward commercialization in the 1980’s.


Author(s):  
J. P. Zanyk

A review of the development and use of the gas turbine generator unit in The Dow Chemical Company for the cogeneration of steam and electric power energy for Dow’s major chemical complex. This review highlights the success and problems of Dow Chemical’s most recently constructed power plant at its Texas Division in Freeport, Texas. A review of Dow’s experience and developed technology to provide a reliable cogenerating plant.


Author(s):  
M. J. Kermani ◽  
B. Rad Nasab ◽  
M. Saffar-Avval

The effect of ambient conditions, ambient temperature and site location of the power plant (the altitude or ambient pressure), on the performance of a typical supplementary fired (SF) gas-steam combined cycle (CC) is studied, and its performances are compared with that of the unfired case. The CC used in the present study is comprised of two V94.2 gas turbine units, two HR-steam generators and a single steam cycle. For the cases studied, it is observed that SF can increase the total net power of the CC by 5% and the efficiency for the fired-cycle is observed to be about 1% less than that of unfired-cycle case. The variations of the total net power with ambient temperature for both supplementary fired and unfired cases (slope w.r.t. the ambient temperature) are almost identical.


2021 ◽  
Author(s):  
Pugalenthi Nanadagopal ◽  
Matthias Duerr ◽  
Ole Fahrendorf ◽  
Dan Haid ◽  
Hubert Paprotna

Abstract Gas turbine-based combine cycle (GT-CC) economic evaluation is very important to bring together own equipment manufacturing companies (OEM’s) and power plant owners. The fuel cost & cost of electricity play the major role in economic evaluation which drives the decision during the bidding. The first portion of this paper encompasses the different cost analysis methods like Net Present Value (NPV), Internal Rate of Return (IRR), Levelized Cost of Electricity (LCOE) and Pay Back Period (PBP) for different fuel costs and electricity prices. The second portion of the paper covers the delta cost benefits due to improvement in the combined cycle degradation GT-CC operators or customers are looking for the opportunities to control and minimize the degradation of the gas turbine power plant which directly impact the profitability. The customer or operator always monitor the plant performance to understand the life cost impact on performance degradation. This paper will help the customers & GT-CC OEM companies to focus on different area to reduce the unit cost of generating electricity, decide to move forward with the project during the proposal and improve the business at various regions based on fuel cost and global geographical political situations. Also, the reader can digest the benefits of improved degradation curve over the normal curve.


Author(s):  
Yongjun Zhao ◽  
Vitali Volovoi ◽  
Mark Waters ◽  
Dimitri Mavris

The deregulation of the electric power market has introduced strong competition, and as a result, power plant operators strive to develop advanced operational strategies to maximize the profitability given the conditions of the dynamic electric power market. In the deregulated electric power market, the operational strategies should match the evolving electric power market, and be capable of performing an optimization that is specific to a unit operating in a complex environment. A profit based, lifecycle oriented, and unit specific approach is proposed for more effective gas turbine power plant operational optimization, and methodologies for this approach are developed. This paper outlines an integrated, generic environment for unit-specific gas turbine power plant operational modeling and optimization, while several other follow up papers address specific operational optimization problems. The procedure is implemented for a generic combined cycle power plant with single gas turbine with the results demonstrating the feasibility of the proposed approach.


Author(s):  
C. F. McDonald ◽  
L. Cavallaro ◽  
D. Kapich ◽  
W. A. Medwid

To meet the energy needs of special terrestrial defense installations, where a premium is placed on high plant efficiency, conceptual studies have been performed on an advanced closed-cycle gas turbine system with a high-temperature gas-cooled reactor (HTGR) as the heat source. Emphasis has been placed on system compactness and plant simplicity. A goal of plant operation for extended periods with no environmental contact had a strong influence on the design features. To realize a high plant efficiency (over 50%) for this mode of operation, a combined cycle was investigated. A primary helium Brayton power conversion system coupled with a Freon bottoming cycle was selected. The selection of a gas turbine power conversion system is very much related to applications where high efficiency is paramount and this can be realized with the utilization of a cold heat sink. Details are presented of the reactor arrangement, power conversion system, major components, installation, and performance for a compact nuclear power plant currently in a very early stage of concept definition.


Author(s):  
Christian Engelbert ◽  
Joseph J. Fadok ◽  
Robert A. Fuller ◽  
Bernd Lueneburg

Driven by the requirements of the US electric power market, the suppliers of power plants are challenged to reconcile both plant efficiency and operating flexibility. It is also anticipated that the future market will require more power plants with increased power density by means of a single gas turbine based combined-cycle plant. Paramount for plant efficiency is a highly efficient gas turbine and a state-of-the-art bottoming cycle, which are well harmonized. Also, operating and dispatch flexibility requires a bottoming cycle that has fast start, shutdown and cycling capabilities to support daily start and stop cycles. In order to meet these requirements the author’s company is responding with the development of the single-shaft 1S.W501G combined-cycle power plant. This nominal 400MW class plant will be equipped with the highly efficient W501G gas turbine, hydrogen-cooled generator, single side exhausting KN steam turbine and a Benson™ once-through heat recovery steam generator (Benson™-OT HRSG). The single-shaft 1S.W501G design will allow the plant not only to be operated economically during periods of high demand, but also to compete in the traditional “one-hour-forward” trading market that is served today only by simple-cycle gas turbines. By designing the plant with fast-start capability, start-up emissions, fuel and water consumption will be dramatically reduced. This Reference Power Plant (RPP) therefore represents a logical step in the evolution of combined-cycle power plant designs. It combines both the experiences of the well-known 50Hz single-shaft 1S.V94.3A plant with the fast start plant features developed for the 2.W501F multi-shaft RPP. The paper will address results of the single-shaft 1S.W501G development program within the authors’ company.


Sign in / Sign up

Export Citation Format

Share Document