Design of a Pressurized Fluid Bed Coal Fired Combined Cycle Electric Power Generation Plant

1978 ◽  
Author(s):  
S. Moskowitz ◽  
G. Weth

The combination of pressurized fluidized bed (PFB) technology and the gas turbine - steam turbine combined-cycle power system offer a unique opportunity for the production of electric power at increased plant efficiency from the direct combustion of high sulfur coal and that is environmentally acceptable without stack gas cleanup. The concept offers the prospect of earlier commercialization than those systems requiring gasification or liquefication of coal to clean fels. This paper presents the design of a 500-MW commercial powerplant prepared in conjunction with the U.S. Department of Energy sponsored program for the design, construction, and operation of a coal-fired PFB/turbine electric pilot plant. The powerplant approach develops over 60 percent of the plant capacity by multiple gas turbine gas turbine-generators and the balance of the capacity by a steam turbine-generator. The paper describes the fluid bed process selection of an air heater cycle. With two-thirds of the compressor discharge air indirectly heated within an in-bed gas-to-air heat exchanger and one-third of the compressor air involved in the combustion process, technology requirements for hot gas cleanup and turbine protection are minimized. This approach, which offers a coal-pile-to-busbar plant efficiency of over 40 percent is superior to other concepts and contemporary plants in terms of plant arrangement flexibility, part-load performance, power availability, and provides a low risk in development toward commercialization in the 1980’s.

Author(s):  
A. Robertson ◽  
Zhen Fan ◽  
H. Goldstein ◽  
D. Horazak ◽  
R. Newby ◽  
...  

Research has been conducted under United States Department of Energy (USDOE) Contract DE-AC21-86MC21023 to develop a new type of coal-fired, combined cycle, gas turbine-steam turbine plant for electric power generation. This new type of plant — called a 2nd Generation or Advanced Pressurized Fluidized Bed Combustion (APFB) plant — offers the promise of efficiencies greater than 48 percent (HHV) with both emissions and a cost of electricity that are significantly lower than those of conventional pulverized-coal-fired plants with scrubbers. In the 2nd Generation PFB plant coal is partially gasified in a pressurized fluidized bed reactor to produce a coal derived syngas and a char residue. The syngas fuels the gas turbine and the char fuels a pressurized circulating fluidized bed (PCFB) boiler that powers the steam turbine and supplies hot vitiated air for the combustion of the syngas. A conceptual design and an economic analysis was previously prepared for this plant, all based on the use of a Siemens Westinghouse W501F gas turbine with projected gasifier, PCFB boiler, and gas turbine topping combustor performance data. Having tested these components at a pilot plant scale and observed better than expected performance, the referenced conceptual design has been updated to reflect that test experience and to incorporate more advanced turbines e.g. a Siemens Westinghouse W501G gas turbine and a 2400 psig/1050°F/1050°F/2-1/2 in. Hg steam turbine. This paper presents the performance and economics of the updated plant design along with data on some alternative plant arrangements.


1970 ◽  
Author(s):  
F. W. L. Hubert ◽  
H. J. Meima ◽  
A. R. J. Timmermans

Together with rapid development of the gas turbine technology a number of combined cycle arrangements have been proposed in literature. Characteristics of such installations are different from those of the installations normally used for similar application. The purpose of this paper is to determine how these characteristics compare in the case of a large utility power plant for a Municipal Electric Power Authority in the Netherlands. Factors as plant efficiency, fuel cost, investment and capital interest may differ from case to case and have to be reconsidered taking into account site location and economic factors.


1980 ◽  
Author(s):  
T. R. Koblish ◽  
L. M. Nucci

Studies sponsored by the U. S. Department of Energy (DOE) have indicated that the combined cycle, incorporating an open cycle gas turbine having a Low Btu gas (LBG) fueled combustor operating at temperatures over 2600 F and a closed cycle steam turbine can produce cost competitive electric power from gasified coal. For increased efficiency, the coal gasification system would be integrated with the gas turbine which supplies the compressed air for the coal gasification system, and the steam turbine which supplies the steam for the gasification system. The coal gasifier would provide a pressurized low heating value (LBG) fuel (at the order of ISO Btu/SCF (5590 kJ/m3) for combustion in the gas turbine engine. Under DOE sponsorship, one of the gas turbine engine components being investigated both analytically and experimentally, is the LBG fueled combustor. This paper describes the LBG configuration background technology utilized in the design of the combustor and the test program outline for substantiation of the design approach.


Author(s):  
Pereddy Nageswara Reddy ◽  
J. S. Rao

Abstract A three stage combined power cycle with a Brayton cycle as the topping cycle, a Rankine cycle as the middling cycle and an Organic Rankine Cycle (ORC) as the bottoming cycle is proposed in the present investigation. A two-stage Gas Turbine Power Plant (GTPP) with inter-cooling, reheating and regeneration based on the Brayton cycle, a single-stage Steam Turbine Power Plant (STPP) based on the Rankine cycle, and a two-stage ORC power plant with reheating based on ORC with atmospheric air as the coolant is considered in the present study. This arrangement enables the proposed plant to utilize the waste heat to the maximum extent possible and convert it into electric power. As the plant can now operate at low sink temperatures depending on atmospheric air, the efficiency of the combined cycle power plant increases dramatically. Further, Steam Turbine Exhaust Pressure (STEP) is positive resulting in smaller size units and a lower installation cost. A simulation code is developed in MATLAB to investigate the performance of a three stage combined power cycle at different source and sink temperatures with varying pressure in heat recovery steam boiler and condenser-boiler. Performance results are plotted with Gas Turbine Inlet Temperature (GTIT) of 1200 to 1500 °C, Coolant Air Temperature (CAT) of −15 to +25 °C, and pressure ratio of GTPP as 6.25, 9.0 and 12.25 for different organic substances and NH3 as working fluids in the bottoming ORC. Simulation results show that the efficiency of the three stage combined power cycle will go up to 64 to 69% depending on the pressure ratio of GTPP, GTIT, and CAT. It is also observed that the variation in the efficiency of the three stage combined power cycle is small with respect to the type of working fluid used in the ORC. Among the organic working fluids R134a, R12, R22, and R123, R134a gives a higher combined cycle efficiency.


2006 ◽  
Vol 128 (05) ◽  
pp. 36-39
Author(s):  
Lee S. Langston

This paper focuses on research and innovation in the gas turbine industry. The production of nonaviation gas turbines was $3.6 billion in 1990, only 15% of total production. With improvement in thermal efficiency, increases in unit size, and the building of record breaking combined-cycle electric power plants fueled by cheap natural gas, nonaviation production zoomed to a euphoric high of $25.8 billion in 2001. The US Department of Energy announced last year the award of $130 million for 10 new projects to integrate hydrogen-burning gas turbines and turbine subsystems into integrated gasification combined cycle (IGCC) central power stations. Nuclear generation is also a zero-emissions technology, and Pebble Bed Modular Reactor Ltd, a South African company, is developing a gas turbine-nuclear reactor electric power plant, with participating companies that include Westinghouse, MHI of Japan, Nukem of Germany, and South Africa's Eskom.


Author(s):  
Christian L. Vandervort ◽  
Mohammed R. Bary ◽  
Larry E. Stoddard ◽  
Steven T. Higgins

The Externally-Fired Combined Cycle (EFCC) is an attractive emerging technology for powering high efficiency combined gas and steam turbine cycles with coal or other ash bearing fuels. The key near-term market for the EFCC is likely to be repowering of existing coal fueled power generation units. Repowering with an EFCC system offers utilities the ability to improve efficiency of existing plants by 25 to 60 percent, while doubling generating capacity. Repowering can be accomplished at a capital cost half that of a new facility of similar capacity. Furthermore, the EFCC concept does not require complex chemical processes, and is therefore very compatible with existing utility operating experience. In the EFCC, the heat input to the gas turbine is supplied indirectly through a ceramic heat exchanger. The heat exchanger, coupled with an atmospheric coal combustor and auxiliary components, replaces the conventional gas turbine combustor. Addition of a steam bottoming plant and exhaust cleanup system completes the combined cycle. A conceptual design has been developed for EFCC repowering of an existing reference plant which operates with a 48 MW steam turbine at a net plant efficiency of 25 percent. The repowered plant design uses a General Electric LM6000 gas turbine package in the EFCC power island. Topping the existing steam plant with the coal fueled EFCC improves efficiency to nearly 40 percent. The capital cost of this upgrade is 1,090/kW. When combined with the high efficiency, the low cost of coal, and low operation and maintenance costs, the resulting cost of electricity is competitive for base load generation.


Author(s):  
Wancai Liu ◽  
Hui Zhang

Gas turbine is widely applied in power-generation field, especially combined gas-steam cycle. In this paper, the new scheme of steam turbine driving compressor is investigated aiming at the gas-steam combined cycle power plant. Under calculating the thermodynamic process, the new scheme is compared with the scheme of conventional gas-steam combined cycle, pointing its main merits and shortcomings. At the same time, two improved schemes of steam turbine driving compressor are discussed.


1980 ◽  
Author(s):  
J. Jermanok ◽  
R. E. Keith ◽  
E. F. Backhaus

A new 37-MW, single-shaft gas turbine power plant has been designed for electric power generation, for use in either simple-cycle or combined-cycle applications. This paper describes the design features, instrumentation, installation, test, and initial operation.


2010 ◽  
Vol 132 (12) ◽  
pp. 57-57
Author(s):  
Lee S. Langston

This article presents an overview of gas turbine combined cycle (CCGT) power plants. Modern CCGT power plants are producing electric power as high as half a gigawatt with thermal efficiencies approaching the 60% mark. In a CCGT power plant, the gas turbine is the key player, driving an electrical generator. Heat from the hot gas turbine exhaust is recovered in a heat recovery steam generator, to generate steam, which drives a steam turbine to generate more electrical power. Thus, it is a combined power plant burning one unit of fuel to supply two sources of electrical power. Most of these CCGT plants burn natural gas, which has the lowest carbon content of any other hydrocarbon fuel. Their near 60% thermal efficiencies lower fuel costs by almost half compared to other gas-fired power plants. Their installed capital cost is the lowest in the electric power industry. Moreover, environmental permits, necessary for new plant construction, are much easier to obtain for CCGT power plants.


Author(s):  
David J. Olsheski ◽  
William W. Schulke

Traditionally commercial marine propulsion needs have been met with direct drive reciprocating prime movers. In order to increase efficiency, simplify installation and maintenance accessibility, and increase cargo / passenger capacity; indirect electric drive gas and steam turbine combined cycle prime movers are being introduced to marine propulsion systems. One such application is the Royal Caribbean Cruise Line (RCCL) Millennium Class ship. This commercial vessel has two aero-derivative gas turbine generator sets with a single waste heat recovery steam turbine generator set. Each is controlled by independent microprocessor based digital control systems. This paper addresses only the gas turbine control system architecture and the unique safety and dynamic features that are integrated into the control system for this application.


Sign in / Sign up

Export Citation Format

Share Document