scholarly journals A Compact Diffuser System for Annular Combustors

Author(s):  
R. C. Adkins ◽  
J. O. Yost

Airflow tests have been conducted on an aerodynamic simulation of a combustor with pre-diffuser of compact configuration. The inlet Mach number throughout the tests was 0.35. The configuration was successful because of the attainment of a high pressure recovery, (Cp = 0.80), coupled with an exceptionally low total pressure loss (λ = 0.04). A useful analytical relationship is derived between the aerodynamic performance of combustor, compressor exit Mach number and diffuser performance.

2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Justin Chappell ◽  
Phil Ligrani ◽  
Sri Sreekanth ◽  
Terry Lucas ◽  
Edward Vlasic

The performance of suction-side gill region film cooling is investigated using the University of Utah transonic wind tunnel and a simulated turbine vane in a two-dimensional cascade. The effects of film cooling hole orientation, shape, and number of rows, and their resulting effects on the aerodynamic losses, are considered for four different hole configurations: round axial (RA), shaped axial (SA), round radial (RR), and round compound (RC). The mainstream Reynolds number based on axial chord is 500,000, exit Mach number is 0.35, and the tests are conducted using the first row of holes, or both rows of holes at blowing ratios of 0.6 and 1.2. Carbon dioxide is used as the injectant to achieve density ratios of 1.77–1.99 similar to values present in operating gas turbine engines. Presented are the local distributions of total pressure loss coefficient, local normalized exit Mach number, and local normalized exit kinetic energy. Integrated aerodynamic losses (IAL) increase anywhere from 4% to 45% compared with a smooth blade with no film injection. The performance of each hole type depends on the airfoil configuration, film cooling configuration, mainstream flow Mach number, number of rows of holes, density ratio, and blowing ratio, but the general trend is an increase in IAL as either the blowing ratio or the number of rows of holes increase. In general, the largest total pressure loss coefficient Cp magnitudes and the largest IAL are generally present at any particular wake location for the RR or SA configurations, regardless of the film cooling blowing ratio and number of holes. The SA holes also generally produce the highest local peak Cp magnitudes. IAL magnitudes are generally lowest with the RA hole configuration. A one-dimensional mixing loss correlation for normalized IAL values is also presented, which matches most of the both rows data for RA, SA, RR, and RC hole configurations. The equation also provides good representation of the RA, RC, and RR first row data sets.


Author(s):  
Yuxuan Dong ◽  
Zhigang Li ◽  
Jun Li

Abstract The exhaust diffuser with different struts was numerically calculated by solving three-dimensional Reynolds-Averaged Navier-Stokes (RANS). The flow process and flow loss mechanism in the diffuser were analyzed, the influence of two different structures of tapered struts on the aerodynamic performance of the exhaust diffuser under different inlet pre-swirls was explored, and the aerodynamic performance of the exhaust diffuser with tapered struts was compared with a conventional exhaust diffuser with linear struts. The results show that, compared with the conventional linear strut, under different inlet pre-swirls, two different tapered struts can both weaken the flow separation in the exhaust diffuser, thereby reducing the total pressure loss. When the inlet pre-swirl is greater than 0.35, the total pressure loss coefficient of the exhaust diffuser with structure-C tapered struts decreases by up to 0.07. The two types of tapered struts also change the flow structure at the exhaust diffuser outlet, which affects the uniformity of the outlet airflow, and then affect the static pressure recovery coefficient. Under different inlet pre-swirls, two types of tapered struts can be effective to increase the static pressure recovery coefficient of the exhaust diffuser, for the exhaust diffuser with structure-C tapered struts, the static pressure recovery coefficient can be increased by up to 0.065, relative increase of 20%. The research in this paper shows that the tapered structure can significantly improve the aerodynamic performance of the exhaust diffuser under different inlet pre-swirls.


2021 ◽  
Author(s):  
Feng Li ◽  
Zhao Liu ◽  
Zhenping Feng

Abstract The blade tip region of the shroud-less high-pressure gas turbine is exposed to an extremely operating condition with combined high temperature and high heat transfer coefficient. It is critical to design new tip structures and apply effective cooling method to protect the blade tip. Multi-cavity squealer tip has the potential to reduce the huge thermal loads and improve the aerodynamic performance of the blade tip region. In this paper, numerical simulations were performed to predict the aerothermal performance of the multi-cavity squealer tip in a heavy-duty gas turbine cascade. Different turbulence models were validated by comparing to the experimental data. It was found that results predicted by the shear-stress transport with the γ-Reθ transition model have the best precision. Then, the film cooling performance, the flow field in the tip gap and the leakage losses were presented with several different multi-cavity squealer tip structures, under various coolant to mainstream mass flow ratios (MFR) from 0.05% to 0.15%. The results show that the ribs in the multi-cavity squealer tip could change the flow structure in the tip gap for that they would block the coolant and the leakage flow. In this study, the case with one-cavity (1C) achieves the best film cooling performance under a lower MFR. However, the cases with multi-cavity (2C, 3C, 4C) show higher film cooling effectiveness under a higher MFR of 0.15%, which are 32.6%%, 34.2%% and 41.0% higher than that of the 1C case. For the aerodynamic performance, the case with single-cavity has the largest total pressure loss coefficient in all MFR studied, whereas the case with two-cavity obtains the smallest total pressure loss coefficient, which is 7.6% lower than that of the 1C case.


Author(s):  
Kenta Mizutori ◽  
Koji Fukudome ◽  
Makoto Yamamoto ◽  
Masaya Suzuki

Abstract We performed numerical simulation to understand deposition phenomena on high-pressure turbine vane. Several deposition models were compared and the OSU model showed good adaptation to any flow field and material, so it was implemented on UPACS. After the implementation, the simulations of deposition phenomenon in several cases of the flow field were conducted. From the results, particles adhere on the leading edge and the trailing edge side of the pressure surface. Also, the calculation of the total pressure loss coefficient was conducted after computing the flow field after deposition. The total pressure loss coefficient increased after deposition and it was revealed that the deposition deteriorates aerodynamic performance.


Author(s):  
David J. Cerantola ◽  
A. M. Birk

A genetic algorithm was implemented to determine preferential solutions of a short annular diffuser exhaust system of length 1.5Do (outer annulus diameters). Five free variables defined the centre body shape and two variables determined the outer wall profile. Diffuser performance was evaluated using three objectives—(i) diffuser pressure recovery, (ii) outlet velocity uniformity, and (iii) total pressure loss—that were calculated from steady state solutions obtained using the computational fluid dynamics software FLUENT 13.0 with the realizable k-ε turbulence model and enhanced wall treatment. Inlet conditions were ReDh = 8.5 × 104 and M = 0.23. After thirty-five generations, a paraboloid-shaped centre body with length 0.74Do and initial annular expansion of approximately 14° produced preferential solutions. A configuration with a converging outer wall above the centre body developed greater outlet flow uniformity and lower total pressure loss whereas a straight outer wall followed by the solid diffuser generated more static pressure recovery.


Author(s):  
Prasanta K. Sinha ◽  
Biswajit Haldar ◽  
Amar N. Mullick ◽  
Bireswar Majumdar

Curved diffusers are an integral component of the gas turbine engines of high-speed aircraft. These facilitate effective operation of the combustor by reducing the total pressure loss. The performance characteristics of these diffusers depend on their geometry and the inlet conditions. In the present investigation the distribution of axial velocity, transverse velocity, mean velocity, static and total pressures are experimentally studied on a curved diffuser of 30° angle of turn with an area ratio of 1.27. The centreline length was chosen as three times of inlet diameter. The experimental results then were numerically validated with the help of Fluent, the commercial CFD software. The measurements of axial velocity, transverse velocity, mean velocity, static pressure and total pressure distribution were taken at Reynolds number 1.9 × 105 based on inlet diameter and mass average inlet velocity. The mean velocity and all the three components of mean velocity were measured with the help of a pre-calibrated five-hole pressure probe. The velocity distribution shows that the flow is symmetrical and uniform at the inlet and exit sections and high velocity cores are accumulated at the top concave surface due to the combined effect of velocity diffusion and centrifugal action. It also indicates the possible development of secondary motions between the concave and convex walls of the test diffuser. The mass average static pressure recovery and total pressure loss within the curved diffuser increases continuously from inlet to exit and they attained maximum values of 35% and 14% respectively. A comparison between the experimental and predicated results shows a good qualitative agreement between the two. Standard k-ε model in Fluent solver was chosen for validation. It has been observed that coefficient of pressure recovery Cpr for the computational investigation was obtained as 38% compared to the experimental investigation which was 35% and the coefficient of pressure loss is obtained as 13% in computation investigation compared to the 14% in experimental study, which indicates a very good qualitative matching.


Author(s):  
Zhihua Zhou ◽  
Shaowen Chen ◽  
Songtao Wang

Tip clearance flow between rotating blades and the stationary casing in high-pressure turbines is very complex and is one of the most important factors influencing turbine performance. The rotor with a winglet-cavity tip is often used as an effective method to improve the loss resulting from the tip clearance flow. In this study, an aerodynamic geometric optimisation of a winglet-cavity tip was carried out in a linear unshrouded high-pressure axial turbine cascade. For the purpose of shaping the efficient winglet geometry of the rotor tip, a novel parameterisation method has been introduced in the optimisation procedure based on the computational fluid dynamics simulation and analysis. The reliability of a commercial computational fluid dynamics code with different turbulence models was first validated by contrasting with the experimental results, and the numerical total pressure loss and flow angle using the Baseline k-omega Model (BSL κ-ω model) shows a better agreement with the test data. Geometric parameterisation of blade tips along the pressure side and suction side was adopted to optimise the tip clearance flow, and an optimal winglet-cavity tip was proven to achieve lower tip leakage mass flow rate and total pressure loss than the flat tip and cavity tip. Compared to the numerical results of flat tip and cavity tip, the optimised winglet-cavity design, with the winglet along the pressure side and suction side, had lower tip leakage mass flow rate and total pressure loss. It offered a 35.7% reduction in the change ratio [Formula: see text]. In addition, the optimised winglet along pressure side and suction side, respectively, by using the parameterisation method was studied for investigating the individual effect of the pressure-side winglet and suction-side winglet on the tip clearance flow. It was found that the suction-side extension of the optimal winglet resulted in a greater reduction of aerodynamic loss and leakage mass flow than the pressure-side extension of the optimal winglet. Moreover, with the analysis based on the tip flow pattern, the numerical results show that the pressure-side winglet reduced the contraction coefficient, and the suction-side winglet reduced the aerodynamic loss effectively by decreasing the driving pressure difference near the blade tips, the leakage flow velocity, and the interaction between the leakage flow and the main flow. Overall, a better aerodynamic performance can be obtained by adopting the pressure-side and suction-side winglet-cavity simultaneously.


Author(s):  
A. Asghar ◽  
W. D. E. Allan ◽  
M. LaViolette ◽  
R. Woodason

This paper addresses the issue of aerodynamic performance of a novel 3D leading edge modification to a reference low pressure turbine blade. An analysis of tubercles found in nature and used in some engineering applications was employed to synthesize new leading edge geometry. A sinusoidal wave-like geometry characterized by wavelength and amplitude was used to modify the leading edge along the span of a 2D profile, rendering a 3D blade shape. The rationale behind using the sinusoidal leading edge was that they induce streamwise vortices at the leading edge which influence the separation behaviour downstream. Surface pressure and total pressure measurements were made in experiments on a cascade rig. These were complemented with computational fluid dynamics studies where flow visualization was also made from numerical results. The tests were carried out at low Reynolds number of 5.5 × 104 on a well-researched profile representative of conventional low pressure turbine profiles. The performance of the new 3D leading edge geometries was compared against the reference blade revealing a downstream shift in separated flow for the LE tubercle blades; however, total pressure loss reduction was not conclusively substantiated for the blade with leading edge tubercles when compared with the performance of the baseline blade. Factors contributing to the total pressure loss are discussed.


Author(s):  
Hakan Aksoy ◽  
Stony W. Kujala ◽  
Craig W. McKeever ◽  
Ly D. Nguyen

The design of the APU (Auxiliary Power Unit) for the F-35 JSF (Joint Strike Fighter) focused on minimizing size and weight while meeting stringent performance goals. To help realize that goal, a unique turbine scroll was designed. The scroll design delivers air from the combustor to the turbine inlet with minimal loss and flow distortion while minimizing design space. CFD (Computational Fluid Dynamics) results of scroll total pressure loss and exit peripheral distribution of total pressure, Mach number, and flow angle are presented. Rig tests were utilized for measuring and validating the computed total pressure and Mach number distributions around the periphery of the scroll exit. Comparisons of the CFD simulations and test data indicate strong correlation in values of average total pressure loss, local total pressure loss and Mach number around the exit periphery.


2021 ◽  
Author(s):  
Satpreet Sidhu ◽  
Asad Asghar ◽  
William D. E. Allan ◽  
R. A. Stowe ◽  
R. Pimentel

Abstract Inlets are an essential element of aircraft propulsion systems. Aircraft with fuselage-embedded engines require intake ducts with bends to direct oncoming air into the engine. Consequently they often experience flow separation, losses, total pressure distortion, and swirling flow near the engine faces, all of which are detrimental to engine stability and performance. In some aircraft, double-entrance ducts are used to meet geometric constraints and maintain the required airflow. The present paper investigated aerodynamic performance of a bifurcated Y-duct with S-bends in both horizontal and vertical planes. Intake performance was evaluated at inlet Ma = 0.63 by measuring the surface static pressure along the four stream-wise rows of pressure taps and total pressure and 3D velocities using 5-hole probe across the exit plane of the intake duct. The data were used to determine the static and total pressure recovery, together with associated radial and circumferential distortion coefficients and swirl intensity. This work provides a rare experimental data-set for a twin-entrance, moderately high-subsonic, double S-duct intake. It compared reasonably with the most similar work published, that of single-entrance ducts at higher Mach number. Pressure recovery was on par while swirl was noted to be reduced when compared with those geometries. Complementary computational fluid dynamics was useful in the qualitative comparisons as well.


Sign in / Sign up

Export Citation Format

Share Document