scholarly journals Status of the AGT 100 Advanced Gas Turbine Program

Author(s):  
Lance E. Groseclose ◽  
Richard A. Johnson

Recent activities on the AGT 100 Advanced Gas Turbine Program have included engine testing, aerodynamic component development, and ceramic material and component development. Engine testing has progressed in total hours and hours per build, without a major failure. A special mechanical loss test was conducted. Aerodynamic component activity has included the compressor, combustor and regenerator. Ceramic development was continued in areas of basic materials, processing, component fabrication and evaluation, and engine testing.

Author(s):  
C. M. Waldhelm

Solar’s Mars Model T-14,000 gas turbine was developed and introduced as a 10.5-MW (14,100-hp), 33.5% thermal efficiency, industrial second-generation, simple-cycle gas turbine for mechanical-drive, power generation, and gas compression applications. Options include multi-fuel and rating capability with low emissions. Component development, rig and instrumented engine testing, and extended field evaluations evolved prior to market release in 1991.


Author(s):  
Peter D. Smout ◽  
Steven C. Cook

The determination of gas turbine engine performance relies heavily on intrusive rakes of pilot tubes and thermocouples for gas path pressure and temperature measurement. For over forty years, Kiel-shrouds mounted on the rake body leading edge have been used as the industry standard to de-sensitise the instrument to variations in flow incidence and velocity. This results in a complex rake design which is expensive to manufacture, susceptible to mechanical damage, and difficult to repair. This paper describes an exercise aimed at radically reducing rake manufacture and repair costs. A novel ’common cavity rake’ (CCR) design is presented where the pressure and/or temperature sensors are housed in a single slot let into the rake leading edge. Aerodynamic calibration data is included to show that the performance of the CCR design under uniform flow conditions and in an imposed total pressure gradient is equivalent to that of a conventional Kiel-shrouded rake.


Author(s):  
Christian Felsmann ◽  
Uwe Gampe ◽  
Manfred Freimark

Solar hybrid gas turbine technology has the potential to increase the efficiency of future solar thermal power plants by utilizing solar heat at a much higher temperature level than state of the art plants based on steam turbine cycles. In a previous paper the authors pointed out, that further development steps are required for example in the field of component development and in the investigation of the system dynamics to realize a mature technology for commercial application [1]. In this paper new findings on system dynamics are presented based on the simulation model of a solar hybrid gas turbine with parallel arrangement of the combustion chamber and solar receivers. The operational behavior of the system is described by means of two different scenarios. The System operation in a stand-alone electrical supply network is investigated in the first scenario. Here it is shown that fast load changes in the network lead to a higher shaft speed deviation of the electric generator compared to pure fossil fired systems. In the second scenario a generator load rejection, as a worst case, is analyzed. The results make clear that additional relief concepts like blow-off valves are necessary as the standard gas turbine protection does not meet the specific requirements of the solar hybrid operation. In general the results show, that the solar hybrid operational modes are much more challenging for the gas turbines control and safety system compared to pure fossil fired plants due to the increased volumetric storage capacity of the system.


Author(s):  
V. Pachidis ◽  
P. Pilidis ◽  
I. Li

The performance analysis of modern gas turbine engine systems has led industry to the development of sophisticated gas turbine performance simulation tools and the utilization of skilled operators who must possess the ability to balance environmental, performance and economic requirements. Academic institutions, in their training of potential gas turbine performance engineers have to be able to meet these new challenges, at least at a postgraduate level. This paper describes in detail the “Gas Turbine Performance Simulation” module of the “Thermal Power” MSc course at Cranfield University in the UK, and particularly its practical content. This covers a laboratory test of a small Auxiliary Power Unit (APU) gas turbine engine, the simulation of the ‘clean’ engine performance using a sophisticated gas turbine performance simulation tool, as well as the simulation of the degraded performance of the engine. Through this exercise students are expected to gain a basic understanding of compressor and turbine operation, gain experience in gas turbine engine testing and test data collection and assessment, develop a clear, analytical approach to gas turbine performance simulation issues, improve their technical communication skills and finally gain experience in writing a proper technical report.


Author(s):  
Robin W. Parry ◽  
Edward House ◽  
Matthew Stauffer ◽  
Michael Iacovelli ◽  
William J. Higgins

Development of the Northrop Grumman / Rolls-Royce WR21 Intercooled Recuperated (ICR) Gas Turbine, begun in 1992, is now well advanced and system testing has been completed on eight engine builds at the Royal Navy’s Admiralty Test House located at the Defence Evaluation and Research Agency, Pyestock in the United Kingdom. Test activity is shortly to move to the US Navy’s Test Site at the Naval Surface Warfare Center, Carderock Division – Ship Systems Engineering Station in Philadelphia, PA, where a new test facility has been built to carry out some final development testing and an endurance test. A previous paper on this subject (94-GT-186) defined a test program leading to a design review and the beginning of Qualification Testing. The development program has since evolved and it is the aim of this paper to summarize engine testing to date and set out the plan for conclusion of development testing. The paper will describe the development of the Philadelphia Test Site, as a combined site for the US Navy’s Integrated Power System (IPS) and ICR testing. This will include a description of the advanced, high-accuracy Data Acquisition System (DAS). Finally, the test program and the development and endurance test objectives will be outlined.


Author(s):  
Eric P. Bouillon ◽  
Patrick C. Spriet ◽  
Georges Habarou ◽  
Thibault Arnold ◽  
Greg C. Ojard ◽  
...  

Advanced materials are targeting durability improvement in gas turbine engines. One general area of concern for durability is in the hot section components of the engine. Ceramic matrix composites offer improvements in durability at elevated temperatures with a corresponding reduction in weight for nozzles of gas turbine engines. Building on past material efforts, ceramic matrix composites using a carbon and a SiC fiber with a self-sealing matrix have been developed for gas turbine applications. Prior to ground engine testing, a reduced test matrix was undertaken to aggressively test the material in a long-term hold cycle at elevated temperatures and environments. This tensile low cycle fatigue testing was done in air and a 90% steam environment. After completion of the aggressive testing effort, six nozzle seals were fabricated and installed in an F100-PW-229 engine for accelerated mission testing. The C fiber CMC and the SiC Fiber CMC were respectively tested to 600 and 1000 hours in accelerated conditions without damage. Engine testing is continuing to gain additional time and insight with the objective of pursuing the next phase of field service evaluation. Mechanical testing and post-test characterization results of this testing will be presented. The results of the engine testing will be shown and overall conclusions drawn.


Author(s):  
John A. Bailey ◽  
Franklin D. Jordan ◽  
Carey A. Kinney

A very brief history of the Army closed-Brayton-cycle gas turbine program is presented as background for discussion of the status and recent test results at the Advanced Power Conversion Experimental Facility at Fort Belvoir. The APCEF program is intended to emphasize component development in contrast to system development at the Advanced Power Conversion Skid Experiment (APCSE) at San Ramon, Calif. The APCEF is described along with the components being tested, experimental test results are discussed and analyzed, and a preliminary evaluation is presented.


Author(s):  
P. Lacitignola ◽  
E. Valentini

This paper presents a review of the engineering testing program related to development of the PGT-25 gas turbine. The experimental methods employed and their capability of providing information for the tuning of the engine and its parts are discussed. Testing has continuously supported turbine design and development; integration of analytical and experimental procedures has proven to be efficient for successful final engine testing. Full load testing, using well developed instrumentation, has made it possible to know actual component behavior and engine performance in steady and transient states, over the entire speed and power range. The reliability of the machine has been assessed through the results of these tests.


Author(s):  
G. L. Boyd ◽  
J. R. Kidwell ◽  
D. M. Kreiner

The Garrett/Ford Advanced Gas Turbine Technology Development Program, designated AGT101, has made significant progress during 1985 encompassing ceramic engine and ceramic component testing. Engine testing has included full speed operation to 100,000 rpm and 1149C (2100F) turbine inlet temperature, initial baseline performance mapping and ceramic combustor start and steady state operation. Over 380 hours of test time have been accumulated on four development engines. High temperature foil bearing coatings have passed rig test and a thick precious metal foil coating selected for engine evaluation. Ceramic structures have been successfully rig tested at 1371C (2500F) for over 27 hours. Interface compatibility testing conducted during these runs indicate RBSN-to-RBSN or SASC-to-SASC result in “sticking” — however, RBSN-to-SASC in either planar or line contact show no evidence of sticking. Ceramic combustor rig tests have demonstrated acceptable lightoffs using either a conventional ignitor or a commercially available glow plug. Operation to 1371C (2500F) combustor discharge temperatures have also been demonstrated. Ceramic turbine rotor fabrication efforts have continued at ACC and Ford. Kyocera and NGK-Locke also have been working on the rotor. Several rotors have been received and are currently undergoing final machining and qualification tests. Testing of the all-ceramic AGT101 engine is currently scheduled for late 1985.


1980 ◽  
Author(s):  
A. Caruvana ◽  
R. S. Rose ◽  
E. D. Alderson ◽  
G. A. Cincotta

This paper presents a preliminary design of a water-cooled gas turbine capable of operating on coal derived fuels and producing 73 MW when burning low Btu coal gas. Particular emphasis is placed on the critical technology issues of combustion and heat transfer at 2600 deg firing temperature. The recent technology developments; i.e., materials developments, composite construction, water cooling, fuels cleanup, etc., which now make this advanced concept possible are discussed. Detailed descriptions of the hot gas path components, the staged sectoral combustor, the water cooled nozzles and buckets, are described showing the implementation of these recent developments. The component development test program which is underway, is described and where testing results are available, design confirmation is demonstrated. Future plans for the construction of a full scale prototype machine and for design verification testing are presented. An analytical evaluation is included which demonstrates the advantages of the water-cooled gas turbine in an integrated gasification combined cycle.


Sign in / Sign up

Export Citation Format

Share Document