Cascade Testing of Ceramic Vanes for Industrial Gas Turbines

1991 ◽  
Author(s):  
I. Tsuji ◽  
S. Aoki ◽  
S. Miyazaki ◽  
Y. Hara ◽  
Y. Furuse ◽  
...  

The development of uncooled ceramic vanes for a 20MW class gas turbine with the firing temperature of 1300°C is progressing. The 1st stage ceramic vanes were made of sintered SiC or sintered Si3N4, and the 2nd stage ceramic vanes were made of sintered Si3N4. These vanes were tested by means of hot and high pressure cascade testing simulating actual gas turbines operation. After minor modifications, we have succeeded in developing sound ceramic vanes which are durable against high thermal stress which occurs during the transient of trip (emergency shutdowns or fuel tripouts), and obtained great results for the practical application. In this paper, details of the ceramic vanes’ structure and cascade testing are described and the results of the tests are discussed.

Author(s):  
Frank Reiss ◽  
Sven-Hendrik Wiers ◽  
Ulrich Orth ◽  
Emil Aschenbruck ◽  
Martin Lauer ◽  
...  

This paper describes the development and test results of the low emission combustion system for the new industrial gas turbines in the 6–7 MW class from MAN Diesel & Turbo. The design of a robust combustion system and the achievement of very low emission targets were the most important design goals of the combustor development. During the design phase, the analysis of the combustor (i.e. burner design, air distribution, liner cooling design) was supported with different CFD tools. This advanced Dry Low Emission can combustion system (ACC) consists of 6 cans mounted externally on the gas turbine. The behavior and performance of a single can sector was tested over a wide load range and with different boundary conditions; first on an atmospheric test rig and later on a high pressure test rig with extensive instrumentation to ensure an efficient test campaign and accurate data. The atmospheric tests showed a very good performance for all combustor parts and promising results. The high pressure tests demonstrated very stable behavior at all operation modes and very low emissions to satisfy stringent environmental requirements. The whole operation concept of the combustion system was tested first on the single-can high pressure test bed and later on twin and single shaft gas turbines at MAN’s gas turbine test facility. During the engine tests, the can combustors demonstrated the expected combustion performance under real operation conditions. All emissions and performance targets were fully achieved. On the single shaft engine, the combustors were running with single digit ppm NOx levels between 50% and 100% load. The validation phase and further optimization of the gas turbines and the engine components are ongoing. The highlights of the development process and results of the combustor and engine tests will be presented and discussed within this paper.


Author(s):  
Donald Anson ◽  
Thomas E. Duffy ◽  
David White ◽  
S. Waslo

The variety of applications in which small industrial gas turbines are used requires that they be readily capable of integration into cogeneration schemes and combined gas/steam cycles as well as providing reliable and efficient stand-alone performance. Several gas turbine based power systems are reviewed briefly. Simple cycle and recuperative engines, and possibly intercooled/recuperative engines, appear to be the most likely primary arrangements for developing more efficient industrial gas turbine based systems. These systems include high pressure, high temperature steam turbines recently developed. When coupled with high pressure, high temperature steam generators, industrial scale simple cycle gas turbines can offer high electrical generation efficiencies with excellent turndown and overall heat utilization in cogeneration mode. Basically, high efficiency depends on firing temperature (TRIT). Firing temperature will continue to increase using advanced metal casting and cooling techniques developed in the aircraft engine sector, and possibly ceramics, which are more applicable in industrial engines than elsewhere. Electrical efficiencies for rated outputs of 5–20 MW will be 32–35 percent for simple cycle gas turbines, up to 42 percent in recuperative engines and cogeneration systems, and 45 percent in combined cycles. The paper lists references describing in detail many of the developments that have contributed to state-of-the-art industrial turbine design.


2021 ◽  
Author(s):  
M. A. Ancona ◽  
M. Bianchi ◽  
L. Branchini ◽  
A. De Pascale ◽  
F. Melino ◽  
...  

Abstract Gas turbines are often employed in the industrial field, especially for remote generation, typically required by oil and gas production and transport facilities. The huge amount of discharged heat could be profitably recovered in bottoming cycles, producing electric power to help satisfying the onerous on-site energy demand. The present work aims at systematically evaluating thermodynamic performance of ORC and supercritical CO2 energy systems as bottomer cycles of different small/medium size industrial gas turbine models, with different power rating. The Thermoflex software, providing the GT PRO gas turbine library, has been used to model the machines performance. ORC and CO2 systems specifics have been chosen in line with industrial products, experience and technological limits. In the case of pure electric production, the results highlight that the ORC configuration shows the highest plant net electric efficiency. The average increment in the overall net electric efficiency is promising for both the configurations (7 and 11 percentage points, respectively if considering supercritical CO2 or ORC as bottoming solution). Concerning the cogenerative performance, the CO2 system exhibits at the same time higher electric efficiency and thermal efficiency, if compared to ORC system, being equal the installed topper gas turbine model. The ORC scarce performance is due to the high condensing pressure, imposed by the temperature required by the thermal user. CO2 configuration presents instead very good cogenerative performance with thermal efficiency comprehended between 35 % and 46 % and the PES value range between 10 % and 22 %. Finally, analyzing the relationship between capital cost and components size, it is estimated that the ORC configuration could introduce an economical saving with respect to the CO2 configuration.


Author(s):  
Bernhard Ćosić ◽  
Frank Reiss ◽  
Marc Blümer ◽  
Christian Frekers ◽  
Franklin Genin ◽  
...  

Abstract Industrial gas turbines like the MGT6000 are often operated as power supply or as mechanical drives. In these applications, liquid fuels like 'Diesel Fuel No.2' can be used either as main fuel or as backup fuel if natural gas is not reliably available. The MAN Gas Turbines (MGT) operate with the Advanced Can Combustion (ACC) system, which is capable of ultra-low NOx emissions for gaseous fuels. This system has been further developed to provide dry dual fuel capability. In the present paper, we describe the design and detailed experimental validation process of the liquid fuel injection, and its integration into the gas turbine package. A central lance with an integrated two-stage nozzle is employed as a liquid pilot stage, enabling ignition and start-up of the engine on liquid fuel only. The pilot stage is continuously operated, whereas the bulk of the liquid fuel is injected through the premixed combustor stage. The premixed stage comprises a set of four decentralized nozzles based on fluidic oscillator atomizers, wherein atomization of the liquid fuel is achieved through self-induced oscillations. We present results illustrating the spray, hydrodynamic, and emission performance of the injectors. Extensive testing of the burner at atmospheric and full load high-pressure conditions has been performed, before verification within full engine tests. We show the design of the fuel supply and distribution system. Finally, we discuss the integration of the dual fuel system into the standard gas turbine package of the MGT6000.


Author(s):  
Philip H. Snyder ◽  
M. Razi Nalim

Renewed interest in pressure gain combustion applied as a replacement of conventional combustors within gas turbine engines creates the potential for greatly increased capability engines in the marine power market segment. A limited analysis has been conducted to estimate the degree of improvements possible in engine thermal efficiency and specific work for a type of wave rotor device utilizing these principles. The analysis considers a realistic level of component losses. The features of this innovative technology are compared with those of more common incremental improvement types of technology for the purpose of assessing potentials for initial market entry within the marine gas turbine market. Both recuperation and non-recuperation cycles are analyzed. Specific fuel consumption improvements in excess of 35% over those of a Brayton cycle are indicated. The technology exhibits the greatest percentage potential in improving efficiency for engines utilizing relatively low or moderate mechanical compression pressure ratios. Specific work increases are indicated to be of an equally dramatic magnitude. The advantages of the pressure gain combustion approach are reviewed as well as its technology development status.


1995 ◽  
Vol 117 (2) ◽  
pp. 245-250 ◽  
Author(s):  
K. Nakakado ◽  
T. Machida ◽  
H. Miyata ◽  
T. Hisamatsu ◽  
N. Mori ◽  
...  

Employing ceramic materials for the critical components of industrial gas turbines is anticipated to improve the thermal efficiency of power plants. We developed a first-stage stator vane for a 1300°C class, 20-MW industrial gas turbine. This stator vane has a hybrid ceramic/metal structure, to increase the strength reliability of brittle ceramic parts, and to reduce the amount of cooling air needed for metal parts as well. The strength design results of a ceramic main part are described. Strength reliability evaluation results are also provided based on a cascade test using combustion gas under actual gas turbine running conditions.


Author(s):  
Marcin Bielecki ◽  
Salvatore Costagliola ◽  
Piotr Gebalski

The paper deliberates vibration limits for non-rotating parts in application to industrial gas turbines. As a rule such limits follow ISO 10816-4 or API616, although in field operation it is not well known relationship between these limits and failure modes. In many situations, the reliability function is not well-defined, and more comprehensive methods of determining the harmful effects of support vibrations are desirable. In the first part, the undertaken approach and the results are illustrated based on the field and theoretical experience of the authors about the failure modes related to alarm level of vibrations. Here several failure modes and diagnostics observations are illustrated with the examples of real-life data. In the second part, a statistical approach based on correlation of support vs. shaft vibrations (velocity / displacement) is demonstrated in order to assess the risk of the bearing rub. The test data for few gas turbine models produced by General Electric Oil & Gas are statistically evaluated and allow to draw an experimentally based transfer function between vibrations recorded by non-contact and seismic probes. Then the vibration limit with objectives like bearing rub is scrutinized with aid of probabilistic tools. In the third part, the attention is given to a few examples of the support vibrations — among other gas turbine with rotors supported on flexible pedestals and baseplate. Here there is determined a transfer coefficient between baseplate and bearing vibrations for specific foundation configurations. Based on the test data screening as well as analysis and case studies thereof, the conclusions about more specific vibration limits in relation to the failure modes are drawn.


Author(s):  
W. S. Cheung ◽  
G. J. M. Sims ◽  
R. W. Copplestone ◽  
J. R. Tilston ◽  
C. W. Wilson ◽  
...  

Lean premixed prevaporised (LPP) combustion can reduce NOx emissions from gas turbines, but often leads to combustion instability. A flame transfer function describes the change in the rate of heat release in response to perturbations in the inlet flow as a function of frequency. It is a quantitative assessment of the susceptibility of combustion to disturbances. The resulting fluctuations will in turn generate more acoustic waves and in some situations self-sustained oscillations can result. Flame transfer functions for LPP combustion are poorly understood at present but are crucial for predicting combustion oscillations. This paper describes an experiment designed to measure the flame transfer function of a simple combustor incorporating realistic components. Tests were conducted initially on this combustor at atmospheric pressure (1.2 bar and 550 K) to make an early demonstration of the combustion system. The test rig consisted of a plenum chamber with an inline siren, followed by a single LPP premixer/duct and a combustion chamber with a silencer to prevent natural instabilities. The siren was used to induce variable frequency pressure/acoustic signals into the air approaching the combustor. Both unsteady pressure and heat release measurements were undertaken. There was good coherence between the pressure and heat release signals. At each test frequency, two unsteady pressure measurements in the plenum were used to calculate the acoustic waves in this chamber and hence estimate the mass-flow perturbation at the fuel injection point inside the LPP duct. The flame transfer function relating the heat release perturbation to this mass flow was found as a function of frequency. The same combustor hardware and associated instrumentation were then used for the high pressure (15 bar and 800 K) tests. Flame transfer function measurements were taken at three combustion conditions that simulated the staging point conditions (Idle, Approach and Take-off) of a large turbofan gas turbine. There was good coherence between pressure and heat release signals at Idle, indicating a close relationship between acoustic and heat release processes. Problems were encountered at high frequencies for the Approach and Take-off conditions, but the flame transfer function for the Idle case had very good qualitative agreement with the atmospheric-pressure tests. The flame transfer functions calculated here could be used directly for predicting combustion oscillations in gas turbine using the same LPP duct at the same operating conditions. More importantly they can guide work to produce a general analytical model.


1978 ◽  
Vol 100 (4) ◽  
pp. 704-710
Author(s):  
Ch. Just ◽  
C. J. Franklin

The need for a thorough and systematic standard evaluation program for new materials for modern industrial gas turbines is shown by several examples and facts. A complete list of the data required by the designer of an industrial gas turbine is given, together with comments to some of the more important properties. A six-phase evaluation program is described which minimizes evaluation time, cost, and the risk of introducing a new material.


2021 ◽  
Author(s):  
Takashi Nishiumi ◽  
Hirofumi Ohara ◽  
Kotaro Miyauchi ◽  
Sosuke Nakamura ◽  
Toshishige Ai ◽  
...  

Abstract In recent years, MHPS achieved a NET M501J gas turbine combined cycle (GTCC) efficiency in excess of 62% operating at 1,600°C, while maintaining NOx under 25ppm. Taking advantage of our gas turbine combustion design, development and operational experience, retrofits of earlier generation gas turbines have been successfully applied and will be described in this paper. One example of the latest J-Series technologies, a conventional pilot nozzle was changed to a premix type pilot nozzle for low emission. The technology was retrofitted to the existing F-Series gas turbines, which resulted in emission rates of lower than 9ppm NOx(15%O2) while maintaining the same Turbine Inlet Temperature (TIT: Average Gas Temperature at the exit of the transition piece). After performing retrofitting design, high pressure rig tests, the field test prior to commercial operation was conducted on January 2019. This paper describes the Ultra-Low NOx combustor design features, retrofit design, high pressure rig test and verification test results of the upgraded M501F gas turbine. In addition, it describes another upgrade of turbine to improve efficiency and of combustion control system to achieve low emissions. Furthermore it describes the trouble-free upgrade of seven (7) units, which was completed by utilizing MHPS integration capabilities, including handling all the design, construction and service work of the main equipment, plant and control systems.


Sign in / Sign up

Export Citation Format

Share Document