scholarly journals Absorption of CO2 With Amines in a Semiclosed GT Cycle: Plant Performance and Operating Costs

Author(s):  
A. Corti ◽  
L. Lombardi ◽  
G. Manfrida

A CO2 removal system, using aqueous solutions of amines, is applied to a Semi-Closed Gas Turbine/Combined Cycle (SCGT/CC) power plant. The SCGT/CC is interesting because of the possibility of achieving low emissions at the stack, with a decreased overall flow rate, lower NOx concentration and an increased CO2 concentration (over 15% in volume), which facilitates the removal treatment. Several compositions of the absorbing solution have been investigated, by means of simulations with ASPEN PLUS. A 18% DEA + 12% MDEA composition resulted the most convenient in terms of flow rate and energy requirement for the stripping. A cost analysis of the removal plant allows to estimate additional costs for CO2 removal with respect to conventional power plants.

Author(s):  
Helmer Andersen

Fuel is by far the largest expenditure for energy production for most power plants. New tools for on-line performance monitoring have been developed for reducing fuel consumption while at the same time optimizing operational performance. This paper highlights a case study where an online performance-monitoring tool was employed to continually evaluate plant performance at the Kalaeloa Combined Cycle Power Plant. Justification for investment in performance monitoring tools is presented. Additionally the influence of various loss parameters on the cycle performance is analyzed with examples. Thus, demonstrating the potential savings achieved by identifying and correcting the losses typically occurring from deficiencies in high impact component performance.


Author(s):  
Frank P. Bevc ◽  
Wayne L. Lundberg ◽  
Dennis M. Bachovchin

The integration of the solid oxide fuel cell (SOFC) and combustion turbine technologies can result in combined-cycle power plants, fueled with natural gas. that have high efficiencies and clean gaseous emissions. Results of a study are presented in which conceptual designs were developed for three power plants based upon such an integration, and ranging in rating from 3 to 10 MW net ac. The plant cycles are described, and characteristics of key components are summarized. In addition, plant design-point efficiency estimates are presented, as well as values of other plant performance parameters.


1998 ◽  
Vol 39 (16-18) ◽  
pp. 1653-1663 ◽  
Author(s):  
Olav Bolland ◽  
PhiliPpe Mathieu

Author(s):  
B. Facchini ◽  
M. Surace ◽  
S. Zecchi

Significant improvements in gas turbine cooling technology are becoming harder as progress goes over and over. Several impingement cooling solutions have been extensively studied in past literature. An accurate and extensive numerical 1D simulation on a new concept of sequential impingement was performed, showing good results. Instead of having a single impingement plate, we used several perforated plates, connecting the inlet of each one with the outlet of the previous one. Main advantages are: absence of the negative interaction between transverse flow and last rows impinging jets (reduced deflection); better distribution of pressure losses and heat transfer coefficients among the different plates, especially when pressure drops are significant and available coolant mass flow rate is low (lean premixed combustion chamber and LP turbine stages). Practical applications can have a positive influence on both cooled nozzles and combustion chambers, in terms of increased cooling efficiency and coolant mass flow rate reduction. Calculated effects are used to analyze main influences of such a cooling system on global performances of power plants.


Author(s):  
Andrea Passarella ◽  
Gianmario L. Arnulfi

As gas turbine exhaust gases leave the turbine at high temperature, heat recovery is often carried out in a combined heat-and-power system or in the steam section of a combined-cycle plant. An interesting alternative is a mirror cycle, which involves coupling together a direct Brayton top cycle and an inverted Brayton bottom cycle; this results in significantly higher power output and efficiency, though at the expense of added complexity. The research illustrated in the present paper was based on two in-house codes and aimed to analyze different plant configurations, one of which was a heat recovery (regenerative) top cycle with the heat exchanger hot side located between the top and bottom cycle turbo-expanders. The authors call this configuration a distorting mirror, as the hot side may not be at atmospheric pressure. A parametric analysis was carried out in order to optimize plant performance vs. pressure levels. Simulation showed that, at the design point, very good performance is obtained: efficiency close to 0.50 with plant cost (per megawatt) about half vs. combined-cycle plants. An off-design analysis showed that the mirror plant is a little more sensitive to changes in load than a simple Brayton, single-shaft GT.


Author(s):  
Jeffrey Amelse ◽  
Paul K. Behrens

Many corporations and governments aspire to become Net Zero Carbon Dioxide by 2030-2050. Achieving this goal requires understanding where energy is produced and consumed, the magnitude of CO2 generation, and the Carbon Cycle. Many prior proposed solutions focus on reducing future CO2 emissions from continued use of fossil fuels. Examination of these technologies exposes their limitations and shows that none offer a complete solution. Direct Capture technologies are needed to reduce CO2 already in the air. The best way to permanently remove CO2 already in the atmosphere is to break the Carbon Cycle by growing biomass from atmospheric CO2 and permanently sequestering that biomass carbon in landfills modified to discourage decomposition to CO2 and methane. Tree leaves and switchgrass are proposed as good biomass sources for this purpose. Left unsequestered, leaves decompose with a short Carbon Cycle time constant releasing CO2 back to the atmosphere. Leaves can represent a substantial fraction of the total biomass generated by a tree when integrated over a tree’s lifetime. The cost for Carbon Capture and Storage (CCS) for growing and sequestering high yield switchgrass is estimated to be lower than CCS for steam reforming of methane hydrogen plants (SRM) and supercritical or combined cycle coal power plants. Thus, sequestration of biomass is a natural, carbon efficient, and low-cost method of Direct Capture. Biomass sequestration can provide CO2 removal on giga tonnes per year scale and can be implemented in the needed timeframe (2030-2050).


Author(s):  
Umberto Desideri ◽  
Stefania Proietti

This paper presents the study of a natural gas fired power cycle which includes a carbon dioxide capture plant based on an absorption and scrubbing system. The interest in this integration is due to the widespread use of combined cycles in the power generation sector because of their high energy conversion efficiency. Energy consumption of the capture and removal system and its influence on the energetic performance of the power plant have been calculated. Mass and heat balance calculations are carried out by using the software tools GateCycle for the combined cycle and Aspen+ Software for the absorption process. Results of plant performance calculations, including compression of the captured carbon dioxide, are presented. The results, compared to the combined cycle power plant with no carbon dioxide capture, have also been compared to the more commonly known carbon dioxide capture process based on atmospheric absorption with MEA.


Author(s):  
Michael McClintock ◽  
Kenneth L. Cramblitt

Monitoring thermal performance in the current generation of combined cycle power plants is frequently a challenge. The “lean” plant staff and organizational structure of the companies that own and operate these plants frequently does not allow the engineering resources to develop and maintain an effective program to monitor thermal performance. Additionally, in many combined cycle plants the highest priority is responding to market demands rather than maintaining peak efficiency. Finally, in many cases the plants are not designed with performance monitoring in mind, thus making it difficult to accurately measure commonly used indices of performance. This paper describes the performance monitoring program being established at a new combined cycle plant that is typical of many combined cycle plants built in the last five years. The plant is equipped with GE 7FA gas turbines and a GE reheat steam turbine. The program was implemented using a set of easy-to-use spreadsheets for the major plant components. The data for the calculation of indices of performance for the various components comes from the plant DCS system and the PI system (supplied by OSIsoft). In addition to the development of spreadsheets, testing procedures were developed to ensure consistent test results and plant personnel were trained to understand, use and maintain the spreadsheets and the information they produce.


Author(s):  
S. Can Gülen ◽  
Indrajit Mazumder

Cost of electricity (COE) is the most widely used metric to quantify the cost-performance trade-off involved in comparative analysis of competing electric power generation technologies. Unfortunately, the currently accepted formulation of COE is only applicable to comparisons of power plant options with the same annual electric generation (kilowatt-hours) and the same technology as defined by reliability, availability, and operability. Such a formulation does not introduce a big error into the COE analysis when the objective is simply to compare two or more base-loaded power plants of the same technology (e.g., natural gas fired gas turbine simple or combined cycle, coal fired conventional boiler steam turbine, etc.) and the same (or nearly the same) capacity. However, comparing even the same technology class power plants, especially highly flexible advanced gas turbine combined cycle units with cyclic duties, comprising a high number of daily starts and stops in addition to emissions-compliant low-load operation to accommodate the intermittent and uncertain load regimes of renewable power generation (mainly wind and solar) requires a significant overhaul of the basic COE formula. This paper develops an expanded COE formulation by incorporating crucial power plant operability and maintainability characteristics such as reliability, unrecoverable degradation, and maintenance factors as well as emissions into the mix. The core impact of duty cycle on the plant performance is handled via effective output and efficiency utilizing basic performance correction curves. The impact of plant start and load ramps on the effective performance parameters is included. Differences in reliability and total annual energy generation are handled via energy and capacity replacement terms. The resulting expanded formula, while rigorous in development and content, is still simple enough for most feasibility study type of applications. Sample calculations clearly reveal that inclusion (or omission) of one or more of these factors in the COE evaluation, however, can dramatically swing the answer from one extreme to the other in some cases.


2021 ◽  
pp. 0958305X2098283
Author(s):  
Muhammad Imran ◽  
Usman Ali ◽  
Ali Hasnain

Climate change is the biggest challenge of this century due to the global consequences of human activities on the ecosystem resulting in global warming. The emissions of greenhouse gases, mainly CO2 from the combustion of fossil fuels in the power plant is the main cause of global warming and to mitigate these emissions is the foremost challenge. Nowadays, the most preferred method is post combustion chemical absorption using amine-based solvents. However, high energy requirements for this method restrict its deployment. An efficient approach used for the reduction of the high energy requirement of post combustion CO2 capture process was absorber intercooling. Therefore, this research evaluates the effect of two configurations of intercooled absorber such as “simple” and “advanced” intercoolers for CO2 capture integrated with natural gas combined cycle power plant using aqueous alkanolamines, such as 30 wt.% monoethanolamine and 50 wt.% methyl-diethanolamine and their blends. For pure methyl-diethanolamine case, at lean loading 0.01 intercooling configurations; simple and advanced shows the highest reduction of 21.01% and 22.82% in the specific reboiler duty, respectively in comparison to other blends at the expense of highest liquid solvent flow rate. Simple and advanced intercooling configurations shows optimum results for the case with 40% monoethanolamine and 60% methyl-diethanolamine in a blend with decrease of 9.19% and 17.28% in solvent flow rate and a decrease of 9.42% and 16.83% in specific reboiler duty required for 90% CO2 capture rate, respectively. For pure monoethanolamine case at lean loading 0.2 absorber intercooling does not offer significant results.


Sign in / Sign up

Export Citation Format

Share Document