Effects of Periodic Wake Passing Upon Aerodynamic Loss of a Turbine Cascade: Part I — Measurements of Wake-Affected Cascade Loss by Use of a Pneumatic Probe
This paper reports on an experimental investigation of aerodynamic loss of a low-speed linear turbine cascade which is subjected to periodic wakes shed from moving bars of the wake generator. In this case, parameters related to the wake, such as wake passing frequency (wake Strouhal number) or wake turbulence characteristics, are varied to see how these wake-related parameters affect the local loss distribution or mass-averaged loss coefficient of the turbine cascade. Free-stream turbulence intensity is changed by use of a turbulence grid. In Part I of this paper a focus is placed on the measurements by use of a pneumatic five-hole yawmeter, which provides time-averaged stagnation pressure distributions downstream of the moving bars as well as of the turbine cascade. Spanwise distributions of wake-affected exit flow angle are also measured. From this study it is found that the wake passing greatly affects not only the profile loss but secondary loss of the linear cascade. Noticeable change in exit flow angle is also identified.