Formation of a Hollow Jet and its Breakup in Ambient Air

Author(s):  
Truong V. Vu ◽  
Hideyuki Takakura ◽  
John C. Wells ◽  
Takashi Minemoto

An experiment investigation on the formation and breakup of a hollow jet issuing from a coaxial nozzle into ambient air has been carried out. The hollow jet consists of an outer jet of water that encloses an inner jet of argon gas. By varying the flow rate ratio of the inner jet to the outer jet, three different breakup patterns of hollow water jets are identified using two types of nozzles: (I) satellite formation, (II) single-core hollow drop formation, and (III) multi-core hollow drop formation. These patterns are mapped in a space of Weber number versus flow rate ratio, We – Q. Experimental results in pattern (II) show that increasing the flow rate ratio results in increasing the formation frequency, slightly increasing outer diameters of the hollow drops, and decreasing their wall thickness.

2018 ◽  
Vol 22 (2) ◽  
pp. 909-919 ◽  
Author(s):  
Kayvan Fallah ◽  
Moahammad Rahni ◽  
Alireza Mohammadzadeh ◽  
Mohammad Najafi

Drop formation in cross-junction micro-channels is numerically studied using the lattice Boltzmann method with pseudo-potential model. To verify the simulation, the results are compared to previous numerical and experimental data. Furthermore, the effects of capillary number, flow rate ratio, contact angle, and viscosity ratio on the flow patterns, drop length, and interval between drops are investigated and highlighted. The results show that the drop forming process has different regimes, namely, jetting, drop, and squeezing regimes. Also, it is shown that increasing in the flow rate ratio in the squeezing regime causes increment in drop length and decrement in drops interval distance. On the other hand, the drops length and the interval between the generated drops increase as contact angle increases. Also, the drop length and distance between drops is solely affected by viscosity ratio.


1989 ◽  
Vol 25 (7) ◽  
pp. 394-396
Author(s):  
V. E. Shcherba ◽  
I. S. Berezin ◽  
S. S. Danilenko ◽  
I. E. Titov ◽  
P. P. Filippov

2017 ◽  
Vol 328 ◽  
pp. 480-487 ◽  
Author(s):  
V.R. Giampietro ◽  
M. Gulas ◽  
P. Rudolf von Rohr
Keyword(s):  

Author(s):  
Ilhan Yu ◽  
Roland Chen ◽  
Samantha Grindrod

Tubular structures of hydrogel are used in a variety of applications such as 3D cell culturing for delivery of nutrient supplies. The wall thickness of the tube determines the speed of diffusion or delivery rate. In this study, we aimed to fabricate tubular structures with varying of wall thicknesses using a thermal-crosslinking hydrogel, gellan gum, with the coaxial needle approach. The wall thickness is controlled by changing the flow rate ratio between the inner (phosphate-buffered saline) and outer needles (gellan gum). A simulation model was developed to estimate the proper extrusion speed to allow the gellan gum to be extruded around its glass transition temperature. While keeping the extrusion rate of gellan gum fixed, different PBS extrusion rates were tested to investigate the printability to form continuous tubular structures, range of printable wall thickness, and possibility to form tubes with closed ends to encapsulate fluid or drug inside the tube. The ranges of printable wall thickness with two pairs of coaxial needle were identified. It was found that at about 200% of the baseline PBS extrusion speed, a maximum of 20% difference in wall thickness can be achieved, while a close end can still be formed.


Circulation ◽  
2000 ◽  
Vol 102 (suppl_3) ◽  
Author(s):  
Tain-Yen Hsia ◽  
Sachin Khambadkone ◽  
Andrew N. Redington ◽  
Francesco Migliavacca ◽  
John E. Deanfield ◽  
...  

Background —In the Fontan circulation, pulmonary and systemic vascular resistances are in series. The implications of this unique arrangement on infradiaphragmatic venous physiology are poorly understood. Methods and Results —We studied the effects of respiration and gravity on infradiaphragmatic venous flows in 20 normal healthy volunteers (control) and 48 Fontan patients (atriopulmonary connection [APC] n=15, total cavopulmonary connection [TCPC] n=30). Hepatic venous (HV), subhepatic inferior vena caval (IVC), and portal venous (PV) flow rates were measured with Doppler ultrasonography during inspiration and expiration in both the supine and upright positions. The inspiratory-to-expiratory flow rate ratio was calculated to reflect the effect of respiration, and the supine-to-upright flow rate ratio was calculated to assess the effect of gravity. HV flow depended heavily on inspiration in TCPC compared with both control and APC subjects (inspiratory-to-expiratory flow rate ratio 3.4, 1.7, and 1.6, respectively; P <0.0001). Normal PV flow was higher in expiration, but this effect was lost in TCPC and APC patients (inspiratory-to-expiratory flow rate ratio 0.8, 1.0, and 1.1, respectively; P =0.01). The respiratory influence on IVC flow was the same in all groups. Gravity decreased HV flow more in APC than in TCPC patients (supine-to-upright flow rate ratio 3.2 versus 2.1, respectively; P <0.04) but reduced PV flow equally in all groups. Conclusions —Gravity and respiration have important influences on infradiaphragmatic venous return in Fontan patients. Although gravity exerts a significant detrimental effect on lower body venous return, which is more marked in APC than in TCPC patients, the beneficial effects of respiration in TCPC patients are mediated primarily by an increase in HV flow. These effects may have important short- and long-term implications for the hemodynamics of the Fontan circulation.


2020 ◽  
Vol 17 (6) ◽  
pp. 1602-1615
Author(s):  
Xu-Yue Chen ◽  
Tong Cao ◽  
Kai-An Yu ◽  
De-Li Gao ◽  
Jin Yang ◽  
...  

AbstractEfficient cuttings transport and improving rate of penetration (ROP) are two major challenges in horizontal drilling and extended reach drilling. A type of jet mill bit (JMB) may provide an opportunity to catch the two birds with one stone: not only enhancing cuttings transport efficiency but also improving ROP by depressuring at the bottom hole. In this paper, the JMB is further improved and a new type of depressure-dominated JMB is presented; meanwhile, the depressurization capacity of the depressure-dominated JMB is investigated by numerical simulation and experiment. The numerical study shows that low flow-rate ratio helps to enhance the depressurization capacity of the depressure-dominated JMB; for both depressurization and bottom hole cleaning concern, the flow-rate ratio is suggested to be set at approximately 1:1. With all other parameter values being constant, lower dimensionless nozzle-to-throat-area ratio may result in higher depressurization capacity and better bottom hole cleaning, and the optimal dimensionless nozzle-to-throat-area ratio is at approximately 0.15. Experiments also indicate that reducing the dimensionless flow-rate ratio may help to increase the depressurization capacity of the depressure-dominated JMB. This work provides drilling engineers with a promising tool to improve ROP.


Author(s):  
Jing-Yu Ran ◽  
Li-Xiang Niu ◽  
Qiang Tang ◽  
Li Zhang

Methane and vapor catalytic-reaction is a complex reaction system, and especially CH4/CO2 reaction has an important influence to the methane/vapor reforming reaction. In this paper, the reaction character for methane and vapor catalytic reforming reaction in the micro-chamber wall with Ni catalyst is numerically investigated. The results show that the CH4/CO2 reaction has a vital influence on reactive characteristics in the different H2O/CH4 mole ratio and the mass flow-rate. With increasing the H2O/CH4 mole ratio, the concentration of H2 and CO2 increases, the concentration of CO increases and then decreases, but if the H2O/CH4 mole ratio is more than 2.5, the result is different. The reaction efficiency will descend while the flow-rate increases. The results also display that the methane conversion ratio, the vapor conversion ratio, and the hydrogen concentrations can be up to 81.73%, 69.42%, and 4.29%, while the H2O/CH4 mole ratio, flow-rate and methane/vapor mass flow-rate ratio are 2.5, 7 g/h and 0.1 respectively.


2019 ◽  
Vol 947 ◽  
pp. 40-46
Author(s):  
Hyun Ji Kim ◽  
Sung Hoon Kim

The formation of aligned carbon microcoils could be achieved using C2H2 as a source gas and CS2 as an incorporated additive gas under thermal chemical vapor deposition system. To elucidate the ratio of C2H2/CS2 for the formation of the aligned carbon microcoils, the CS2 flow rate was first manipulated under the identical C2H2 flow rate (500sccm) condition. The formation and the alignment of carbon microcoils could be only achieved under the ratio of C2H2/CS2 = 33.3 condition, namely the flow rates of CS2 = 15sccm and C2H2= 500sccm. The total flow rate of the used gases was varied under the identical C2H2/CS2 flow rate ratio (33.3) condition. The C2H2 flow rate was manipulated under the identical CS2 flow rate (15sccm) condition. It was found that the formation and the alignment of carbon microcoils could be only achieved under the condition of 15sccm of CS2 flow rate in the range of 200 ~ 500sccm of C2H2 flow rate, regardless of the flow rate ratio of C2H2/CS2 and the total flow rate. The crystal structure of the well-aligned CMCs reveals the increase in the (002) peak in XRD spectrum for the aligned carbon microcoils, indicating the existence of the more regular structure in the aligned carbon microcoils. Based on these results, the cause for the formation of the aligned carbon microcoils only in the case of the CS2 flow rate = 15sccm with the imaginary pictures for the flow rate ratio of C2H2/CS2 just above the substrate were proposed.


2019 ◽  
Vol 821 ◽  
pp. 294-300
Author(s):  
Charnnarong Saikaew

This work investigated the influences of DC current, pressure and N2 to Ar gas flow rate on hardness of a TiN hard coating material for coating a fishing net-weaving machine component of a fishing net-weaving machine, namely upper hook. The target of this study was to maximize the hardness of TiN coated upper hook in order to maximize the corresponding wear resistance. Three process factors including DC current, operating pressure and N2 to Ar flow rate ratio were simultaneously investigated using the factorial design with replicates at the center point of the three factors method. Analysis of variance was used to investigate the effect of the three factors on the hardness of the TiN coated upper hook and the contour plots based on empirical model were plotted to obtain an appropriate operating condition of the statistically significant process factors with maximizing hardness value leading to the wear resistance of the upper hook. The results showed that the operating pressure and the N2 to Ar flow rate ratio and interaction among the three process factors significantly affected the average hardness at the level of significance of 0.05. Finally, an appropriate operating condition of the significant process factors was obtained at the higher levels of the operating pressure and the N2 to Ar flow rate ratio.


Sign in / Sign up

Export Citation Format

Share Document