Application of an Integrated Flow and DBD Plasma Actuation Model to a High-Lift Airfoil: Part II — LES

Author(s):  
Shawn Aram ◽  
Hua Shan ◽  
Yu-Tai Lee

A numerical study is conducted to explore the effect of a single dielectric barrier discharge (SDBD) plasma actuator for controlling a turbulent boundary layer separation on a deflected flap of a high-lift airfoil at a chord-based Reynolds number of 240000. An integrated numerical model consisting of a DBD electro-hydrodynamic (EHD) body force model and computational fluid dynamics (CFD) package called NavyFoam is employed in this study. The EHD body force is calculated by solving the Partial Deferential Equation (PDE)-based electrostatic equations for electric potential due to applied voltage and net charged density due to ionized air. The electric potential equation, the net charge density equation, and the flow equations are solved in separate computational domains. Comparison of current computational results against experimental data indicates reasonable agreement between the two studies for the baseline flow as well as controlled cases using two AC waveforms including sine and pulse-amplitude-modulated sine with different modulation frequencies. Performance of the actuator is also examined for the square and pulse AC waveforms. It is found that at the experimental conditions, the pulse-amplitude-modulated sine waveform provides the most lift enhancement in comparison with other waveforms used in this study, despite the least power input that it requires to operate. The effect of the input voltage amplitude on the performance of the actuator is also examined for the sine and pulse-amplitude-modulated sine waveforms. It is shown that beyond a critical voltage, the sine wave is more effective in improving the aerodynamic performance of the airfoil than the other waveform.

Author(s):  
Shawn Aram ◽  
Yu-Tai Lee ◽  
Hua Shan

A numerical study is conducted to explore the performance and efficiency of Single Dielectric Barrier Discharge (SDBD) plasma actuators for controlling the turbulent boundary layer separation that occurs on the blades of a centrifugal fan. The numerical approach is based on the computational method developed previously to couple a DBD Electro Hydro-Dynamic (EHD) body force model with a RANS/LES flow model. The EHD body force model is based on solving the electrostatic equations for the electric potential due to applied voltage and the net charge density due to ionized air. The efficiency of the actuator at four different alternative current (AC) waveforms including sine, pulse, square, and pulse-amplitude-modulated sine is investigated in this study. The effect of applied voltage on the performance of the plasma actuator is also examined for all waveforms.


Author(s):  
Hua Shan ◽  
Yu-Tai Lee

There has been an increasing interest in dielectric barrier discharge (DBD) plasma actuation for flow control in the past decade. Compared to other means of active flow controls, the DBD plasma actuations have several advantages, including absence of moving parts, a fast time response for unsteady applications, a very low mass of the device, no cavities or holes on control surfaces, and possibly low energy consumption. These features are especially important for applications with high g-loads, such as turbomachinery blades rotating at high speed. A computational method has been developed to couple a DBD electro-hydrodynamic (EHD) body force model with the Reynolds averaged Navier-Stokes (RANS) model for incompressible flows. The EHD body force model is based on solving the electrostatic equations for the electric potential due to applied voltage and the net charge density due to ionized air. The boundary condition for charge density on the dielectric surface is obtained from a Space-Time Lumped-Element (STLE) circuit model that accounts for time and space dependence of the air ionization on the input voltage amplitude, frequency, electrode geometry, and dielectric properties. Alternatively, an empirical formulation representing a Gaussian distribution of charge density on the dielectric surface can also be used. The EHD body force is calculated using the solutions obtained from solving the electric potential and the net charge density equations. As a comparison, a much simpler Linearized Electric Body Force (LEBF) model is also used to directly specify the spatial distribution of the averaged EHD body force. The coupled computational models have been implemented using a multiple-domain approach. The electric potential equation, the net charge density equation, and the flow equations are solved in separate computational domains. All equations are discretized in space using a cell-centered finite volume method. Parallel computation is implemented using domain-decomposition and message passing interface (MPI). Due to a large disparity in time scales between the electric discharge and the flow, a multiple sub-cycle technique is used in coupling the plasma solver and the flow solver. The DBD plasma induced flow in quiescent air is used as a test case and the computational results are validated against experimental measurement. A comparison between different EHD body force models is also presented. Then, the effect of driving duty-cycles with different waveforms and input voltage amplitudes is investigated in terms of electrical power, EHD thrust, and kinetic energy of induced flow.


Author(s):  
Hua Shan ◽  
Shawn Aram ◽  
Yu-Tai Lee

An integrated numerical simulation tool that couples the Reynolds averaged Navier-Stokes (RANS) or the large eddy simulation (LES) solver for incompressible flows with the dielectric barrier discharge (DBD) electro-hydrodynamic (EHD) body force model has been developed. The EHD body force model is based on solving the electrostatic equations for the electric potential due to applied voltage and the net charge density due to ionized air. The boundary condition for the charge density on the dielectric surface is obtained from a Space-Time Lumped-Element (STLE) circuit model that accounts for the time and space dependence of air ionization on the input voltage amplitude, frequency, electrode geometry, and dielectric properties. The development of the numerical simulation tool is based on the framework of NavyFOAM using a multi-domain approach. The electric potential equation, the net charge density equation, and the flow equations are solved in separate computational domains. All equations are discretized in space using the cell-centered finite volume method. Parallel computation is implemented using domain-decomposition and message passing interface (MPI). Due to a large disparity in time scales between the electric discharge and the flow, a multiple sub-cycle technique is used in coupling the plasma solver and the flow solver. This paper focuses on its application to numerical simulation of flow separation and control over a high-lift flapped airfoil at a Reynolds number of 240,000. The 2-D unsteady RANS simulation utilized the Wilcox k-ω, the SST k-ω, and the k-kl-ω turbulence models. For the baseline case, in comparison with the measurement, the k-kl-ω model captures the feature of the unsteadiness of flow field associated with flow separation and shedding of vortices, better than the Wilcox k-ω and SST k-ω models. In the RANS simulations for flow separation control with DBD plasma actuation, the actuator is driven by voltage signals of a continuous or an amplitude-modulated sine waveform with a range of voltage amplitudes. The numerical results indicate that the modulated forcing is more effective than the continuous forcing for a certain range of applied voltages. The electrical power consumption calculated by the plasma model fits to a parabolic curve as a function of the root-mean-square of applied voltage.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Hua Shan ◽  
Yu-Tai Lee

A computational method has been developed to couple the electrohydrodynamic (EHD) body forces induced by dielectric barrier discharge (DBD) actuation with unsteady Reynolds-Averaged Navier–Stokes (URANS) model or large eddy simulation (LES) for incompressible flows. The EHD body force model is based on solving the electrostatic equations for electric potential and net charge density. The boundary condition for net charge density on the dielectric surface is obtained from a space–time lumped-element (STLE) circuit model or an empirical model. The DBD–URANS/LES coupled solver has been implemented using a multiple-domain approach and a multiple subcycle technique. The DBD plasma-induced flow in a quiescent environment is used to validate the coupled solver, evaluate different EHD body force models, and compare the performance of the actuator driven by voltage with various waveforms and amplitudes.


Author(s):  
R. V. Chima

In this work computational models were developed and used to investigate applications of vortex generators (VGs) to turbomachinery. The work was aimed at increasing the efficiency of compressor components designed for the NASA Ultra Efficient Engine Technology (UEET) program. Initial calculations were used to investigate the physical behavior of VGs. A parametric study of the effects of VG height was done using 3-D calculations of isolated VGs. A body force model was developed to simulate the effects of VGs without requiring complicated grids. The model was calibrated using 2-D calculations of the VG vanes and was validated using the 3-D results. Then three applications of VGs to a compressor rotor and stator were investigated: 1. The results of the 3-D calculations were used to simulate the use of small casing VGs used to generate rotor preswirl or counterswirl. Computed performance maps were used to evaluate the effects of VGs. 2. The body force model was used to simulate large partspan splitters on the casing ahead of the stator. Computed loss buckets showed the effects of the VGs. 3. The body force model was also used to investigate the use of tiny VGs on the stator suction surface for controlling secondary flows. Near-surface particle traces and exit loss profiles were used to evaluate the effects of the VGs.


1986 ◽  
Vol 57 (8) ◽  
pp. 559-562 ◽  
Author(s):  
H. Nait-Laziz ◽  
K.K. Chopra

Author(s):  
Vaibhav K. Arghode ◽  
Pramod Kumar ◽  
Yogendra Joshi ◽  
Thomas S. Weiss ◽  
Gary Meyer

Effective air flow distribution through perforated tiles is required to efficiently cool servers in a raised floor data center. We present detailed computational fluid dynamics (CFD) modeling of air flow through a perforated tile and its entrance to the adjacent server rack. The realistic geometrical details of the perforated tile, as well as of the rack are included in the model. Generally models for air flow through perforated tiles specify a step pressure loss across the tile surface, or porous jump model based on the tile porosity. An improvement to this includes a momentum source specification above the tile to simulate the acceleration of the air flow through the pores, or body force model. In both of these models geometrical details of tile such as pore locations and shapes are not included. More details increase the grid size as well as the computational time. However, the grid refinement can be controlled to achieve balance between the accuracy and computational time. We compared the results from CFD using geometrical resolution with the porous jump and body force model solution as well as with the measured flow field using Particle Image Velocimetry (PIV) experiments. We observe that including tile geometrical details gives better results as compared to elimination of tile geometrical details and specifying physical models across and above the tile surface. A modification to the body force model is also suggested and improved results were achieved.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7601
Author(s):  
Beatriz Arauzo ◽  
Álvaro González-Garcinuño ◽  
Antonio Tabernero ◽  
María Pilar Lobera ◽  
Jesús Santamaría ◽  
...  

A new approach based on the atomization of non-Newtonian fluids has been proposed to produce microparticles for a potential inhalation route. In particular, different solutions of alginate were atomized on baths of different crosslinkers, piperazine and barium chloride, obtaining microparticles around 5 and 40 microns, respectively. These results were explained as a consequence of the different viscoelastic properties, since oscillatory analysis indicated that the formed hydrogel beads with barium chloride had a higher storage modulus (1000 Pa) than the piperazine ones (20 Pa). Pressure ratio (polymer solution-air) was identified as a key factor, and it should be from 0.85 to 1.00 to ensure a successful atomization, obtaining the smallest particle size at intermediate pressures. Finally, a numerical study based on dimensionless numbers was performed to predict particle size depending on the conditions. These results highlight that it is possible to control the microparticles size by modifying either the viscoelasticity of the hydrogel or the experimental conditions of atomization. Some experimental conditions (using piperazine) reduce the particle size up to 5 microns and therefore allow their use by aerosol inhalation.


Author(s):  
Palak Saini ◽  
Jeff Defoe

Abstract Body force models enable inexpensive numerical simulations of turbomachinery. The approach replaces the blades with sources of momentum/energy. Such models capture a “smeared out” version of the blades’ effect on the flow, reducing computational cost. The body force model used in this paper has been widely used in aircraft engine applications. Its implementation for low speed, low solidity (few blades) turbomachines, such as automotive cooling fans, enables predictions of cooling flows and component temperatures without calibrated fan curves. Automotive cooling fans tend to have less than 10 blades, which is approximately 50% of blade counts for modern jet engine fans. The effect this has on the body force model predictions is unknown and the objective of this paper is to quantify how varying blade count affects the accuracy of the predictions for both uniform and non-uniform inflow. The key findings are that reductions in blade metal blockage combined with spanwise flow redistribution drives the body force model to more accurately predict work coefficient as the blade count decreases, and that reducing the number of blades is found to have negligible impacts on upstream influence and distortion transfer in non-uniform inflow until extremely low blade counts (such as 2) are applied.


Sign in / Sign up

Export Citation Format

Share Document