scholarly journals Tuning Alginate Microparticle Size via Atomization of Non-Newtonian Fluids

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7601
Author(s):  
Beatriz Arauzo ◽  
Álvaro González-Garcinuño ◽  
Antonio Tabernero ◽  
María Pilar Lobera ◽  
Jesús Santamaría ◽  
...  

A new approach based on the atomization of non-Newtonian fluids has been proposed to produce microparticles for a potential inhalation route. In particular, different solutions of alginate were atomized on baths of different crosslinkers, piperazine and barium chloride, obtaining microparticles around 5 and 40 microns, respectively. These results were explained as a consequence of the different viscoelastic properties, since oscillatory analysis indicated that the formed hydrogel beads with barium chloride had a higher storage modulus (1000 Pa) than the piperazine ones (20 Pa). Pressure ratio (polymer solution-air) was identified as a key factor, and it should be from 0.85 to 1.00 to ensure a successful atomization, obtaining the smallest particle size at intermediate pressures. Finally, a numerical study based on dimensionless numbers was performed to predict particle size depending on the conditions. These results highlight that it is possible to control the microparticles size by modifying either the viscoelasticity of the hydrogel or the experimental conditions of atomization. Some experimental conditions (using piperazine) reduce the particle size up to 5 microns and therefore allow their use by aerosol inhalation.

1989 ◽  
Vol 54 (1) ◽  
pp. 91-101 ◽  
Author(s):  
Milan Stakić ◽  
Slobodan Milonjić ◽  
Vladeta Pavasović ◽  
Zoja Ilić

Ultrafiltration of three laboratory made silica and two commercial silica sols was studied using Amicon YC membrane in a 200 ml capacity batch-cell. The effect of silica particle size, stirring conditions, pressure, pH and silica contents on ultrafiltration was investigated. The results obtained indicate that the smaller particles have, disregarding the stirring conditions, lower filtration flux. The differences observed in filtration flux are more pronounced in the conditions without stirring. The obtained value of the membrane resistance is independent of the conditions investigated (stirring, pressure, pH, silica contents and particle size). The values of the resistance of polarized solids, specific resistance, and the mass of gel per membrane surface unit were calculated for all experimental conditions.


2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110178
Author(s):  
Zhengang Liu ◽  
Weinan Diao ◽  
Zhenxia Liu ◽  
Fei Zhang

Particle deposition could decrease the aerodynamic performance and cooling efficiency of turbine vanes and blades. The particle motion in the flow and its temperature are two important factors affecting its deposition. The size of the particle influences both its motion and temperature. In this study, the motion of particles with the sizes from 1 to 20 μm in the first stage of a turbine are firstly numerically simulated with the steady method, then the particle deposition on the vanes and blades are numerically simulated with the unsteady method based on the critical viscosity model. It is discovered that the particle deposition on vanes mainly formed near the leading and trailing edge on the pressure surface, and the deposition area expands slowly to the whole pressure surface with the particle size increasing. For the particle deposition on blades, the deposition area moves from the entire pressure surface toward the tip with the particle size increasing due to the effect of rotation. For vanes, the particle capture efficiency increases with the particle size increasing since Stokes number and temperature of the particle both increase with its size. For blades, the particle capture efficiency increases firstly and then decreases with the particle size increasing.


2021 ◽  
Vol 83 (8) ◽  
Author(s):  
Valeria Cigala ◽  
Ulrich Kueppers ◽  
Juan José Peña Fernández ◽  
Donald B. Dingwell

AbstractPredicting the onset, style and duration of explosive volcanic eruptions remains a great challenge. While the fundamental underlying processes are thought to be known, a clear correlation between eruptive features observable above Earth’s surface and conditions and properties in the immediate subsurface is far from complete. Furthermore, the highly dynamic nature and inaccessibility of explosive events means that progress in the field investigation of such events remains slow. Scaled experimental investigations represent an opportunity to study individual volcanic processes separately and, despite their highly dynamic nature, to quantify them systematically. Here, impulsively generated vertical gas-particle jets were generated using rapid decompression shock-tube experiments. The angular deviation from the vertical, defined as the “spreading angle”, has been quantified for gas and particles on both sides of the jets at different time steps using high-speed video analysis. The experimental variables investigated are 1) vent geometry, 2) tube length, 3) particle load, 4) particle size, and 5) temperature. Immediately prior to the first above-vent observations, gas expansion accommodates the initial gas overpressure. All experimental jets inevitably start with a particle-free gas phase (gas-only), which is typically clearly visible due to expansion-induced cooling and condensation. We record that the gas spreading angle is directly influenced by 1) vent geometry and 2) the duration of the initial gas-only phase. After some delay, whose length depends on the experimental conditions, the jet incorporates particles becoming a gas-particle jet. Below we quantify how our experimental conditions affect the temporal evolution of these two phases (gas-only and gas-particle) of each jet. As expected, the gas spreading angle is always at least as large as the particle spreading angle. The latter is positively correlated with particle load and negatively correlated with particle size. Such empirical experimentally derived relationships between the observable features of the gas-particle jets and known initial conditions can serve as input for the parameterisation of equivalent observations at active volcanoes, alleviating the circumstances where an a priori knowledge of magma textures and ascent rate, temperature and gas overpressure and/or the geometry of the shallow plumbing system is typically chronically lacking. The generation of experimental parameterisations raises the possibility that detailed field investigations on gas-particle jets at frequently erupting volcanoes might be used for elucidating subsurface parameters and their temporal variability, with all the implications that may have for better defining hazard assessment.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 32
Author(s):  
Waleed H. Hassoon ◽  
Dariusz Dziki ◽  
Antoni Miś ◽  
Beata Biernacka

The objective of this study was to determine the grinding characteristics of wheat with a low moisture content. Two kinds of wheat—soft spelt wheat and hard Khorasan wheat—were dried at 45 °C to reduce the moisture content from 12% to 5% (wet basis). Air drying at 45 °C and storage in a climatic chamber (45 °C, 10% relative humidity) were the methods used for grain dehydration. The grinding process was carried out using a knife mill. After grinding, the particle size distribution, average particle size and grinding energy indices were determined. In addition, the dough mixing properties of wholemeal flour dough were studied using a farinograph. It was observed that decreasing the moisture content in wheat grains from 12% to 5% made the grinding process more effective. As a result, the average particle size of the ground material was decreased. This effect was found in both soft and hard wheat. Importantly, lowering the grain moisture led to about a twofold decrease in the required grinding energy. Moreover, the flour obtained from the dried grains showed higher water absorption and higher dough stability during mixing. However, the method of grain dehydration had little or no effect on the results of the grinding process or dough properties.


Author(s):  
Yu Wang ◽  
Qi He ◽  
Ming Liu ◽  
Weixiong Chen ◽  
Junjie Yan

In pulverized coal-fired plant, the U-type bend is commonly used in flue gas and pulverized coal pipe system to due to the constraints of outer space. And gas-solid two-phase flow exists in these pipelines. The erosion of the pipe has significant effect on the safety and reliability of pipelines. In present paper, the erosion characteristics of U-type bend were investigated through CFD (Computational Fluid Dynamics) method. The wear distribution on the pipe wall was obtained. And the particle flow characteristics in U-type bend were analyzed. The influence of inlet velocity, mass loading rate and particle size on the erosion rate was studied as well. Result suggested that the maximum erosion rate increases exponentially with the increase of inlet velocity. And maximum erosion rate increases linearly with the increasing mass loading rate. Increasing particle size can aggravate the wear on the pipe wall.


2014 ◽  
Vol 70 (1) ◽  
pp. 136-143 ◽  
Author(s):  
K. Y. Lee ◽  
K. W. Kim ◽  
Y. J. Baek ◽  
D. Y. Chung ◽  
E. H. Lee ◽  
...  

The uranium(VI) adsorption efficiency of non-living biomass of brown algae was evaluated in various adsorption experimental conditions. Several different sizes of biomass were prepared using pretreatment and surface-modification steps. The kinetics of uranium uptake were mainly dependent on the particle size of the prepared Laminaria japonica biosorbent. The optimal particle size, contact time, and injection amount for the stable operation of the wastewater treatment process were determined. Spectroscopic analyses showed that uranium was adsorbed in the porous inside structure of the biosorbent. The ionic diffusivity in the biomass was the dominant rate-limiting factor; therefore, the adsorption rate was significantly increased with decrease of particle size. From the results of comparative experiments using the biosorbents and other chemical adsorbents/precipitants, such as activated carbons, zeolites, and limes, it was demonstrated that the brown algae biosorbent could replace the conventional chemicals for uranium removal. As a post-treatment for the final solid waste reduction, the ignition treatment could significantly reduce the weight of waste biosorbents. In conclusion, the brown algae biosorbent is shown to be a favorable adsorbent for uranium(VI) removal from radioactive wastewater.


Author(s):  
Adam C. Gladen ◽  
Susan C. Mantell ◽  
Jane H. Davidson

A thermotropic material is modeled as an absorbing, thin slab containing anisotropic scattering, monodisperse, spherical particles. Monte Carlo ray tracing is used to solve the governing equation of radiative transfer. Predicted results are validated by comparison to the measured normal-hemispherical reflectance and transmittance of samples with various volume fraction and relative index of refraction. A parametric study elucidates the effects of particle size parameter, scattering albedo, and optical thickness on the normal-hemispherical transmittance, reflectance, and absorptance. The results are interpreted for a thermotropic material used for overheat protection of a polymer solar absorber. For the preferred particle size parameter of 2, the optical thickness should be less than 0.3 to ensure high transmittance in the clear state. To significantly reduce the transmittance and increase the reflectance in the translucent state, the optical thickness should be greater than 2.5 and the scattering albedo should be greater than 0.995. For optical thickness greater than 5, the reflectance is asymptotic and any further reduction in transmittance is through increased absorptance. A case study is used to illustrate how the parametric study can be used to guide the design of thermotropic materials. Low molecular weighted polyethylene in poly(methyl methacrylate) is identified as a potential thermotropic material. For this material and a particle radius of 200 nm, it is determined that the volume fraction and thickness should equal 10% and 1 mm, respectively.


2014 ◽  
Vol 663 ◽  
pp. 347-353
Author(s):  
Layth H. Jawad ◽  
Shahrir Abdullah ◽  
Zulkifli R. ◽  
Wan Mohd Faizal Wan Mahmood

A numerical study that was made in a three-dimensional flow, carried out in a modified centrifugal compressor, having vaned diffuser stage, used as an automotive turbo charger. In order to study the influence of vaned diffuser meridional outlet section with a different width ratio of the modified centrifugal compressor. Moreover, the performance of the centrifugal compressor was dependent on the proper matching between the compressor impeller along the vaned diffuser. The aerodynamic characteristics were compared under different meridional width ratio. In addition, the velocity vectors in diffuser flow passages, and the secondary flow in cross-section near the outlet of diffuser were analysed in detail under different meridional width ratio. Another aim of this research was to study and simulate the effect of vaned diffuser on the performance of a centrifugal compressor. The simulation was undertaken using commercial software so-called ANSYS CFX, to predict numerically the performance charachteristics. The results were generated from CFD and were analysed for better understanding of the fluid flow through centrifugal compressor stage and as a result of the minimum width ratio the flow in diffuser passage tends to be uniformity. Moreover, the backflow and vortex near the pressure surface disappear, and the vortex and detachment near the suction surface decrease. Conclusively, it was observed that the efficiency was increased and both the total pressure ratio and static pressure for minimum width ratio are increased.


2011 ◽  
Vol 11 (1) ◽  
pp. 31-38
Author(s):  
Angayar K. Pavanasam ◽  
Ali Abbas ◽  
Vicki Chen

In water treatment, virus removal using ultrafiltration is a major step towards better water quality. In this paper, we study virus filtration efficiency using surrogate virus particles and via statistical surface-response approach. We focus on the effect of particle size (20–100 nm range) as a key factor along with the effects of transmembrane pressure (20–60 kPa range) and feed flowrate (0.3–1.0 L/F;min range) on the filtration virus removal efficiency (LRV). The particle size is shown to impart a great deal of influence on surrogate particle removal. The effect of particle-to-pore-size ratio is reported for comparison of membrane molecular weight cut off (MWCO) performance. It was shown experimentally and through the developed empirical regression model that transmembrane pressure plays a major role in controlling the filtration efficiency along with flowrate. In the studied experimental range, higher LRV values are obtained at lower transmembrane pressure (20 kPa) and at higher feed flowrate (1 L/F;min). Further the effect on LRV of the interaction between transmembrane pressure and particle size seems to be more significant than that of the interaction of flowrate with particle size.


2020 ◽  
Vol 17 (3) ◽  
pp. 493-505 ◽  
Author(s):  
Haoze Li ◽  
Bingxiang Huang ◽  
Qingying Cheng ◽  
Xinglong Zhao

Abstract Proppant placement concentration, particle size and creep time are important factors that affect the embedment of proppant into coal. Based on multistage creep, an orthogonal test is conducted, and an optimal proppant scheme for different closure stresses obtained. The results show that with increased proppant placement concentration, the number of coal fractures increases and the elastic modulus of the fracture area decreases. As the proppant particle size decreases, the plasticity of fracture-proppant assemblies increases gradually. The yield limit is highest when the particle size is 20/40 mesh. During the proppant embedding process, localization or uneven distribution of proppant results in tensile stress parallel to the fracture surface, which induces tensile fracture in the coal. In the fracture-proppant assembly areas, proppant fractures are severe and yield lines appear. As proppant concentration increases, more energy is accumulated during the proppant compaction stage, resulting in energy release producing craters and crevasses. The energy released also causes increased stress in the proppant-coal contact area and fracturing to the coal mass. The longer the creep time, the weaker the impact and the smaller is fluctuation. Moreover, we find that the orthogonal test can effectively analyze the importance of each parameter. Proppant placement concentration was found to have the highest influence on the process of proppant embedding into coal, followed by particle size and then time. Under experimental conditions, the lowest proppant-embedded value in coal samples was observed with proppant placement concentration of 2 kg m−2 and particle size of 20/40 mesh.


Sign in / Sign up

Export Citation Format

Share Document