Thermal Radiation From a Photonic Crystal of Silica-Particles

Author(s):  
Nozomi Ikemachi ◽  
Ryota Nakano ◽  
Shohei Kurogi ◽  
Koji Miyazaki

Thermal radiation properties, such as reflectivity and emissivity, have been well modified by using a photonic crystal in this decade. In this paper we fabricated three-dimensional photonic crystals by self-assembled silica particles with 3 μm diameter. The close-packed hexagonal photonic crystal with defects is observed by SEM. The measured specular reflectance explained by modified Bragg’s law is measured with a diffuse reflectance by FT-IR. The near normally incident diffuse reflectance is measured by using paraboloidal mirrors to understand the diffuse reflection. We experimentally confirmed the strong diffuse reflectance in the near infrared regions. We numerically calculated reflectance of the three-dimensional photonic crystals by RCWA. The diffuse reflectance in near infrared is calculated only in the photonic crystal with defects. The numerically calculated diffuse reflectance is roughly explained by Mie scattering theory. The directional emissivity of the photonic crystal is measured by FT-IR with collimator. The normal emittance is suppressed in the photonic gap, but the directional emittance is enhanced in 30 degrees. The absorptance is numerically calculated to understand the experimental results. The numerical results show that the directional absorptance is increased in narrow direction. The directional sharp peak in 30 degrees is calculated although the monocrystalline photonic crystal is assumed in the numerical model. The effects of the defects in the photonic crystal on the emittance should be considered to explain the experimental results.

2004 ◽  
Vol 99-100 ◽  
pp. 55-64 ◽  
Author(s):  
D.C. Meisel ◽  
M. Deubel ◽  
M. Hermatschweiler ◽  
K. Busch ◽  
W. Koch ◽  
...  

We review our work on two complementary and compatible techniques, namely direct laser writing and holographic lithography which are suitable for fabricating three-dimensional Photonic Crystal templates for the visible and near-infrared. The structures are characterized by electron micrographs and by optical spectroscopy, revealing their high optical quality.


2009 ◽  
Vol 94 (4) ◽  
pp. 041122 ◽  
Author(s):  
Yu-Lin Yang ◽  
Fu-Ju Hou ◽  
Shich-Chuan Wu ◽  
Wen-Hsien Huang ◽  
Ming-Chih Lai ◽  
...  

2001 ◽  
Vol 681 ◽  
Author(s):  
Noritsugu Yamamoto ◽  
Katsuhiro Tomoda ◽  
Susumu Noda

ABSTRACTBased on a set of requirements identified for photonic crystals intended for use in optoelectronic devices, we have developed a method of fabricating three-dimensional photonic crystals that involves stacking air/semiconductor gratings by wafer fusion approach. Precise alignment of the stacked layers is achieved through the use of a laser beam assisted very precise alignment system, and three-dimensional photonic crystal has been successfully fabricated for the infrared and optical communication wavelength regions. We have also developed a photonic crystal waveguide providing sharp 90° bend.


MRS Bulletin ◽  
2001 ◽  
Vol 26 (8) ◽  
pp. 627-631 ◽  
Author(s):  
Shawn-Yu Lin ◽  
J.G. Fleming ◽  
E. Chow

The drive toward miniature photonic devices has been hindered by our inability to tightly control and manipulate light. Moreover, photonics technologies are typically not based on silicon and, until recently, only indirectly benefited from the rapid advances being made in silicon processing technology. In the first part of this article, the successful fabrication of three-dimensional (3D) photonic crystals using silicon processing will be discussed. This advance has been made possible through the use of integrated-circuit (IC) fabrication technologies (e.g., very largescale integration, VLSI) and may enable the penetration of Si processing into photonics. In the second part, we describe the creation of 2D photonic-crystal slabs operating at the λ = 1.55 μm communications wavelength. This class of 2D photonic crystals is particularly promising for planar on-chip guiding, trapping, and switching of light.


2004 ◽  
Vol 846 ◽  
Author(s):  
G. Subramania ◽  
J. M. Rivera

ABSTRACTWe demonstrate the fabrication of a three-dimensional woodpile photonic crystal in the near-infrared regime using a layer-by-layer approach involving electron-beam lithography and spin-on-glass planarization. Using this approach we have shown that we can make structures with lattice spacings as small as 550 nm with silicon as well as gold thus allowing for fabrication of photonic crystals with omnidirectional gap in the visible and near-IR. As a proof of concept we performed optical reflectivity and transmission measurements on a silicon structure which reveal peaks and valleys expected for a photonic band gap structure. The approach described here can be scaled down to smaller lattice constants (down to ∼400 nm) and can also be used with a variety of materials (dielectric and metallic) thus enabling rapid prototyping full three-dimensional photonic bandgap based photonic devices in the visible.


2021 ◽  
Vol 118 (23) ◽  
pp. e2101357118
Author(s):  
Vinodkumar Saranathan ◽  
Suresh Narayanan ◽  
Alec Sandy ◽  
Eric R. Dufresne ◽  
Richard O. Prum

Vivid, saturated structural colors are conspicuous and important features of many animals. A rich diversity of three-dimensional periodic photonic nanostructures is found in the chitinaceous exoskeletons of invertebrates. Three-dimensional photonic nanostructures have been described in bird feathers, but they are typically quasi-ordered. Here, we report bicontinuous single gyroid β-keratin and air photonic crystal networks in the feather barbs of blue-winged leafbirds (Chloropsis cochinchinensis sensu lato), which have evolved from ancestral quasi-ordered channel-type nanostructures. Self-assembled avian photonic crystals may serve as inspiration for multifunctional applications, as they suggest efficient, alternative routes to single gyroid synthesis at optical length scales, which has been experimentally elusive.


2019 ◽  
Author(s):  
Johannes W. Goessling ◽  
William P. Wardley ◽  
Martin Lopez Garcia

AbstractNatural photonic crystals can serve in mating strategies or as aposematism for animals, but they also exist in some photosynthetic organisms, with potential implications for their light regulation. Some of the most abundant microalgae, named diatoms, evolved a silicate exoskeleton, the frustule, perforated with ordered pores resembling photonic crystals. Here we present the first combined experimental and theoretical characterization of the photonic properties of the diatom girdle, i.e. one of two structures assembling the frustule. We show that the girdle of the centric diatom Coscinodiscus granii is a well-defined slab photonic crystal, causing, under more natural conditions when immersed in water, a pseudogap for modes in the near infrared. The pseudogap disperses towards the visible spectral range when light incides at larger angles. The girdle crystal structure facilitates in-plane propagation for modes in the green spectral range. We demonstrate that the period of the unit cell is one of the most critical factors for causing these properties. The period is shown to be similar within individuals of a long-term cultivated inbred line and between 4 different C. granii cell culture strains. In contrast, the pore diameter had negligible effects upon the photonic properties. We hence propose that critical parameters defining the photonic response of the girdle are highly preserved. Other centric diatom species, i.e. Thalasiosira pseudonana, C. radiatus and C. wailesii, present similar unit cell morphologies with various periods in their girdles. We speculate that evolution has preserved the photonic crystal character of the centric girdle, indicating an important biological functionality for this clade of diatoms.


2011 ◽  
Vol 9 (72) ◽  
pp. 1609-1614 ◽  
Author(s):  
Bodo D. Wilts ◽  
Kristel Michielsen ◽  
Hans De Raedt ◽  
Doekele G. Stavenga

The brilliant structural body colours of many animals are created by three-dimensional biological photonic crystals that act as wavelength-specific reflectors. Here, we report a study on the vividly coloured scales of the diamond weevil, Entimus imperialis . Electron microscopy identified the chitin and air assemblies inside the scales as domains of a single-network diamond ( Fd 3 m ) photonic crystal. We visualized the topology of the first Brillouin zone (FBZ) by imaging scatterometry, and we reconstructed the complete photonic band structure diagram (PBSD) of the chitinous photonic crystal from reflectance spectra. Comparison with calculated PBSDs indeed showed a perfect overlap. The unique method of non-invasive hemispherical imaging of the FBZ provides key insights for the investigation of photonic crystals in the visible wavelength range. The characterized extremely large biophotonic nanostructures of E. imperialis are structurally optimized for high reflectance and may thus be well suited for use as a template for producing novel photonic devices, e.g. through biomimicry or direct infiltration from dielectric material.


Sign in / Sign up

Export Citation Format

Share Document