High Temperature (800°C) MEMS Pressure Sensor Development Including Reusable Packaging for Rocket Engine Applications

Author(s):  
So¨ren Fricke ◽  
Alois Friedberger ◽  
Thomas Ziemann ◽  
Eberhard Rose ◽  
Gerhard Mu¨ller ◽  
...  

For aircraft and rocket engines there is a strong need to measure the pressure in the propulsion system at high temperature (HT) with a high local resolution. Miniaturized sensor elements commercially available show decisive disadvantages. With piezoelectric-based sensors working clearly above 500°C static pressures can not be measured. Optical sensors are very expensive and require complex electronics. SiC sensor prototypes are operated up to 650°C, but require high technological efforts. The present approach is based on resistors placed on top of a 2 mm diameter sapphire membrane (8 mm chip diameter). The strain gauges are made either of antimony doped tin oxide (SnO2:Sb) or platinum (Pt). This material combination allows for matching the thermal coefficients of expansion (TCE) of the materials involved. The morphology of the SnO2:Sb layer can be optimized to reduce surface roughness on the nanometer scale and hence, gas sensitivity. Antimony doping increases conductivity, but decreases the gauge factor. With this nanotechnological knowledge it is possible to adjust the material properties to the needs of our aerospace applications. Tin oxide was shown to be very stable at HT. We also measured a 2.5% change in electrical resistivity at room temperature at maximum membrane deflection. The maximum temperature coefficient of resistivity (TCR) is less than 3.5·10−4 K−1 in the temperature range between 25°C and 640°C. In addition to the device related research work, a novel reusable packaging concept is developed as housing is the main cost driver. After the chip is destroyed the functional device can simply be replaced — housing and contacts can be reused. The MEMS device is electrically contacted with a miniaturized spring mechanism. It is loaded from the harsh environment side into the HT stable metal housing. A cap is screwed into the housing and compresses the inserted seal ring against the chip. The part for electrical contacting on the opposite housing side is not disassembled. The MEMS device is not in direct contact with the housing material, but embedded between two adaptive layers of the same material as the device (sapphire) to decrease thermally induced mechanical stress. Overall weight is 46 g. This packaging concept has been successfully optimized so that the whole assembly can withstand 800°C and simultaneously provides sealing up to 250 bar! After testing in such harsh environment, the small packaging can still be unscrewed to exchange the MEMS device. Due to the reutilization, the packaging can be used far beyond the lifetime of HT MEMS devices.

Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 216
Author(s):  
Yongwei Li ◽  
Ting Liang ◽  
Cheng Lei ◽  
Qiang Li ◽  
Zhiqiang Li ◽  
...  

In this study, a preparation method for the high-temperature pressure sensor based on the piezoresistive effect of p-type SiC is presented. The varistor with a positive trapezoidal shape was designed and etched innovatively to improve the contact stability between the metal and SiC varistor. Additionally, the excellent ohmic contact was formed by annealing at 950 °C between Ni/Al/Ni/Au and p-type SiC with a doping concentration of 1018cm−3. The aging sensor was tested for varistors in the air of 25 °C–600 °C. The resistance value of the varistors initially decreased and then increased with the increase of temperature and reached the minimum at ~450 °C. It could be calculated that the varistors at ~100 °C exhibited the maximum temperature coefficient of resistance (TCR) of ~−0.35%/°C. The above results indicated that the sensor had a stable electrical connection in the air environment of ≤600 °C. Finally, the encapsulated sensor was subjected to pressure/depressure tests at room temperature. The test results revealed that the sensor output sensitivity was approximately 1.09 mV/V/bar, which is better than other SiC pressure sensors. This study has a great significance for the test of mechanical parameters under the extreme environment of 600 °C.


2009 ◽  
Vol 1 (1) ◽  
pp. 963-966 ◽  
Author(s):  
G. Tortissier ◽  
L. Blanc ◽  
A. Tetelin ◽  
J-L. Lachaud ◽  
M. Benoit ◽  
...  

Author(s):  
Jianshu Lin ◽  
Hong Wang

A comprehensive analysis method is proposed to resolve the problem of simulating a complex thermo-flow with two kinds of distinct characteristic length in the dry gas seal, and a conjugated simulation of the complicated heat transfer and the gas film flow is carried out by using the commercial CFD software CFX. By using the proposed method, a three dimensional of velocity and pressure field in the gas film flow and the temperature distribution within the sealing rings are investigated for three kinds of film thickness, respectively. A comparison of thermo-hydrodynamics of the dry gas seals is conducted between the sealed gas of air and helium. The latter one is used in a helium circulator for High Temperature Gas-cooled Reactor (HTGR). From comparisons and discussions of a series of simulation results, it will be found that the comprehensive proposal is effective and simulation results are reasonable, and the maximum temperature rise in the dry gas seal is within the acceptable range of HTGR safety requirements.


Author(s):  
Yu. Tsapko ◽  
◽  
А. Tsapko ◽  
O. Bondarenko ◽  
V. Lomaha ◽  
...  

Abstract. The processes of creation of fire-retardant varnish for wood consisting of a mixture of inorganic and polymeric substances are investigated in the work. It is established that the optimization of the inorganic component leads to a directional ratio of mineral acids and urea capable of effective fire protection of the material. Studies have shown that at the initial temperature of gaseous combustion products T = 68 °C, when exposed to the radiation panel, the untreated sample ignited after 146 s, the flame spread over the entire surface, instead, the sample fire-protected varnish did not ignite, the maximum temperature was 105 °C. In this case, as evidenced by the results of heat resistance, there is a change in the structure of the protective film of the coating. The thickness of the protective layer increases due to the decomposition of the composition, which leads to inhibition of oxidation in the gas and condensed phase, change the direction of decomposition towards the formation of non-combustible gases and combustible coke residue, reduce material combustion and increase flammability index. The coating under the influence of high temperature promotes the formation of a heat-insulating layer of coke, which prevents burning and the passage of high temperature to the material, which is confirmed by the absence of the process of ignition of fire-retardant wood. Features of braking of process of ignition and distribution of a flame of the wood processed by a varnish which consist in several aspects are established. This is the formation of a heat-insulating layer of coke, which prevents burning and the passage of high temperatures to the material, which is confirmed by the absence of the process of ignition of fire-retardant reeds. This indicates the possibility of targeted control of high temperature transfer processes to organic material through the use of special coatings for wood products.


2015 ◽  
Vol 4 (3) ◽  
pp. 37-55
Author(s):  
Yelena Vitalievna Volkova

The paper contains the results of the field experimental firings in fireplaces and in ovens made on the basis of Samara pottery experimental expedition (Dr N.P. Salugina is the leader of the expedition) in 2013. The author put forward two goals: one is to discover the basic knowledge on firing process with various kinds of fuel, and second is to find out the specific features to discern the vessels fired in fireplaces from the vessels fired in ovens. 20 vessels were prepared to the experiment. The first 10 pots were made of natural clay and the second 10 vessels were made of pottery paste (clay + grog + cow dung). Five simultaneous firings with various kinds of fuel were organized in fireplace and in oven. The author describes in detail the program, main steps, and maximum temperature of firings, the photos of the vessels, and the results of their analytical studies. After the experiments the author came to the next conclusions: firstly - there are absent the reliable features to distinguish the vessels fired in fireplace and in oven, secondly - there is one dependence between a kind pottery paste and a color of fired vessels and another relation between pottery paste and a degree of high-temperature baking of vessels.


Food Research ◽  
2019 ◽  
pp. 808-813
Author(s):  
Ubong A. ◽  
C.Y. New ◽  
L.C. Chai ◽  
Nur Fatihah A. ◽  
Nur Hasria K. ◽  
...  

Bacillus cereus spores are capable of surviving the harsh environment and more often, they cause great concern to the dairy industry. The current research was conducted to study the effect of temperature on germination and growth of B. cereus spores in UHT chocolate milk; the study was carried out at 8°C, 25°C and 35°C over a span of seven days. The results showed that no growth was observed at 8°C. At 25°C, a rapid increase in growth was observed as early as Day 1, from an initial count of ten spores to 4.01 log10 CFU/mL. Meanwhile, at 35°C, the growth on Day 1 was more rapid in which the count promptly increased to 8.07 log10 CFU/mL. Analysis of graph trend showed that the number of vegetative cells decreased while the number of spores increased with incubation time due to nutrients exhaustion. This study fills up the data gap towards understanding the possible issues that might arise in the actual scenario and at the same time, suggests a suitable approach to minimize infection risk caused by B. cereus spores.


2013 ◽  
Vol 19 (S4) ◽  
pp. 109-110
Author(s):  
E. Figueiredo ◽  
R.J.C. Silva ◽  
M.F. Araújo ◽  
R. Vilaça

Microstructural characterisation of an archaeological collection of Protohistoric bronze artefacts attributed to around the VIII century B.C. and has been carried out using optical microscopy (OM) and scanning electron microscopy combined with energy dispersive spectroscopy (SEM-EDS). The collection was found in Medronhal cave (Condeixa-a-Nova, Portugal) and is composed by 1 fibula, 5 bracelets and 31 rings.Small areas on the surfaces of the artefacts were cleaned from corrosion and were metallographically prepared by a manual polishing with several diamond suspensions in a cotton swab until 1 micron diamond size. OM observations were performed in bright field (BF) illumination and under polarized light (Pol), in unetched and etched conditions. SEM-EDS was performed without a conductive coating for a minimum external elemental interference.OM observations allowed the study of the method and sequence of manufacture involved in the production of the various types of artefacts. Results show that the fibula and the bracelets have equiaxed (recrystallised) grain structures resulting from cyclic thermo-mechanical treatments performed to a pre-form cast bar until requested shape and surface finishing was attained. The rings, which are of diverse sizes, have various types of microstructures as a result of diverse manufacturing techniques. Some show a dendritic structure that resulted from the casting, and others show recrystallised structures that resulted from cycles of deformation and annealing procedures posterior to their casting (Figure 1).SEM-EDS analysis allowed the study of the presence of inclusions in the metallic matrix and the study of corrosion in some artefacts (Figure 2). Different types of inclusions were identified, namely copper sulphides, tin oxide, and lead rich inclusions. Both copper sulphides and lead inclusions are commonly found in archaeological bronzes, and can be a result of copper ores impurities. Tin oxide, on the other hand, is not so common, and its presence can be understood as a result of preferential oxidation of tin regarding copper during a melting or alloying operation. The study of the interface alloy/corrosion showed the presence of chlorides in internal corrosion layers, which can probably be related to an aggressiveness of the burial environment.This research work has been financed by the Portuguese Science Foundation (FCT) through the EarlyMetal project (PTDC/HIS-ARQ/110442/2008), the grant SFRH/BPD/73245/2010 (to EF) and the Strategic Project-LA25-2011-2012 (PEst-C/CTM/LA0025/2011) (to CENIMAT/I3N).


2013 ◽  
Vol 2013 (HITEN) ◽  
pp. 000075-000081
Author(s):  
Ramesh Khanna ◽  
Srinivasan Venkataraman

Harsh Environment approved components/ designs require high reliability as well as availability of power to meet their system needs. The paper will explore the various design constrains imposed on the high temperature designs. Down hole oil and gas industry requires high reliability components that can withstand high temperature. Discrete component selection, packaging and constrains imposed by various specification requirements to meet harsh environment approval are critical aspect of high-temp designs. High temperature PCB material, PCB layout techniques, trace characteristics are an important aspect of high-temperature PCB design and will be explored in the article. Buck Converters are the basic building blocks, but in order to meet system requirements to power FPGA's where low output voltage and high currents are required. Converter must be able to provide wider step down ratios with high transient response so buck converters are used. The paper with explore the various features of a buck-based POL converter design. Low noise forces the need for Low-dropout (LDO) Regulators that can operate at high Temperatures up to 210°C. This paper will address the power requirements to meet system needs.


2012 ◽  
Vol 2012 (CICMT) ◽  
pp. 000411-000416
Author(s):  
Michael Weilguni ◽  
Walter Smetana ◽  
Goran Radosavljevic ◽  
Johann Nicolics ◽  
Werner Goebl ◽  
...  

For the development of miniaturized force sensors, built up in ceramics technology with piezo-resistive principle, the compatibility of the piezo-resistive thick-film paste with the substrate and termination paste has to be verified. This paper deals with the compatibility of the ESL 3414-A piezo-resistive paste on HTCC (high temperature co-fired ceramics) substrates (alumina as reference and the partially stabilized zirconia tape ESL 42013-A) as well as on LTCC (low temperature co-fired ceramics) substrates (Heraeus AHT01-005, AHT08-047, CT707; and CeramTec GC) under different manufacturing conditions. The sheet resistance at room temperature, the longitudinal gauge factor at room temperature and the temperature coefficient of resistance have been measured. The results are compared with microscope images showing cracks in distinct cases. Finally, the compatibility and thus applicability of the ESL 3414-A on the investigated substrates is evaluated.


2015 ◽  
Vol 2015 (HiTEN) ◽  
pp. 000111-000115
Author(s):  
Piers R. Tremlett

A polymer based electronic packaging system has been developed that is capable of operating at temperatures over 175°C and up to 225°C. This system is being developed to be a lead free, non-hermetic and able to deliver miniature or functionally dense circuits. It will be suitable for sensor systems where amplification, signal digitisation and autonomy are important whilst operating in a harsh environment such as high temperature.


Sign in / Sign up

Export Citation Format

Share Document