On the Dynamic Analysis of Roller Chain Drives: Part I — Theory

Author(s):  
Nicholas M. Veikos ◽  
Ferdinand Freudenstein

Abstract A generally applicable, computer-aided procedure has been developed for the dynamic analysis of roller chain drives. This approach addresses important factors of chain dynamic behavior such as impact, discontinuities in span length, chain elasticity, coupling between longitudinal and transverse motions, as well as coupling between motion and boundary conditions. The procedure has been used to study various chain configurations. The results show good agreement with experimental observations and indicate some general trends, which provide additional insight into the dynamic behavior of these systems.

Author(s):  
Nicholas M. Veikos ◽  
Ferdinand Freudenstein

Abstract Part I of this paper (5) summarized the previous work and has described the theoretical and computational aspects of a computer-aided procedure which has been developed by the authors for the dynamic analysis of roller chain drives. Lagrange’s equations of motion have been derived by assuming the roller chain to behave as a series of masses lumped at the roller centers and connected by bars of constant axial stiffness. The equations of motion are solved in the time domain until steady state conditions are achieved.


2012 ◽  
Vol 155-156 ◽  
pp. 535-539 ◽  
Author(s):  
Li Xin Xu ◽  
Yong Gang Li

A detailed numerical simulation analysis on the dynamic response of intermittent roller chain drive has been carried out in this study. Instead of using analytical method, three dimension solid modeling software and multi-rigid body dynamic analysis software are utilized for modeling and simulating the dynamic behavior of chain drive. The longitudinal vibration response of the chain links is concentrated on, which aims to reveal the dynamic characteristics of the intermittent chain drive under varying motion laws such as the modified sinusoid (MS), the modified constant velocity (MCV) and the unsymmetrical modified trapezoid (UMT). The simulation results can enable designers to require information on the analysis and design of mechanisms with the intermittent roller chain drives.


1989 ◽  
Vol 111 (3) ◽  
pp. 528-534 ◽  
Author(s):  
S. R. Lee ◽  
K. Srinivasan

The dynamic behavior of a quick-acting hydraulic fuse is investigated here by analysis and experiment. The fuse has a very short response time and is designed to respond to pressure and flow transients that immediately follow a line rupture. In view of the short response time, a proper dynamic analysis of the entire hydraulic circuit is necessary, in addition to analysis of the fuse behavior. Dynamic models of the fuse and other hydraulic circuit elements used in the experimental setup are presented. The experiments consist of simulating line leaks and measuring fuse response, under a variety of operating conditions. Experimental and analytical results are in very good agreement if the leak transients are properly characterized.


2004 ◽  
Vol 11 (5-6) ◽  
pp. 573-584 ◽  
Author(s):  
H. Zheng ◽  
Y.Y. Wang ◽  
K.P. Quek

A refined numerical analysis of the dynamic behavior of roller chain drives is performed considering the roller assembly as a three-layer structure with mechanical clearance between each two of the mechanical components. Instead of using analytical method, explicit finite element technique is utilized for modeling and simulating the dynamic behavior of chain drives. The complete standard geometry of sprockets and all components of chain links are used in the developed model with minor geometry simplification. A primary goal is to achieve a more complete understanding of the dynamic behavior of chain drives especially in the transient vibration response of the engaging rollers, which is crucial for noise emission calculation. The simulated velocity response of the engaging rollers and roller-sprocket contact forces achieved using the full model are compared with what found by the simple model which has been adopted in analytical study of chain roller dynamics.


1991 ◽  
Vol 113 (1) ◽  
pp. 163-167 ◽  
Author(s):  
S. J. Lin ◽  
A. Akers

A previous analysis into the dynamic behavior of the flapper-nozzle component of the electrohydraulic servovalve was performed after linearization of the equations relating to control piston flow (Lin and Akers, 1989a). This paper reports results for first-stage gain and for dynamic behavior when linearization has not been performed. Good agreement has been achieved between results calculated from the nonlinear theory presented and experimental results.


Author(s):  
Mahn Shik Kim ◽  
Glen E. Johnson

Abstract An advanced model in which most important factors of the roller chain drive are considered is developed. Most importantly, for the first time the series of elastic collisions and rebounds that occur as the chain links engage the sprocket is modeled here. Equations of motion are derived in a form very efficient for numerical solution by applying Kane’s method. The equations of motion are programmed and used to simulate responses of dynamic roller chain drives. The dynamic behavior of roller chain drives at moderate and high speeds is studied. Comprehensive observations about the engagement process are presented and discussed. The influence of impact due to collision is investigated. The effects of the center distance and the operation speed on the dynamic behavior of the roller chain are studied, with special attention to the trajectory of the roller chain, the phase between disengagement and engagement, and the transverse vibration.


1997 ◽  
Vol 34 (2) ◽  
pp. 141-160
Author(s):  
Hemanshu R. Pota

A computer aided approach to teaching undergraduate courses in circuit theory and electronics is discussed. It is shown that symbolic manipulation packages like MAPLE give an additional insight into the analysis — complementing the analysis using a numerical simulation package like SPICE — enabling the students to understand complicated circuits.


2019 ◽  
Vol 62 (9) ◽  
pp. 3265-3275
Author(s):  
Heather L. Ramsdell-Hudock ◽  
Anne S. Warlaumont ◽  
Lindsey E. Foss ◽  
Candice Perry

Purpose To better enable communication among researchers, clinicians, and caregivers, we aimed to assess how untrained listeners classify early infant vocalization types in comparison to terms currently used by researchers and clinicians. Method Listeners were caregivers with no prior formal education in speech and language development. A 1st group of listeners reported on clinician/researcher-classified vowel, squeal, growl, raspberry, whisper, laugh, and cry vocalizations obtained from archived video/audio recordings of 10 infants from 4 through 12 months of age. A list of commonly used terms was generated based on listener responses and the standard research terminology. A 2nd group of listeners was presented with the same vocalizations and asked to select terms from the list that they thought best described the sounds. Results Classifications of the vocalizations by listeners largely overlapped with published categorical descriptors and yielded additional insight into alternate terms commonly used. The biggest discrepancies were found for the vowel category. Conclusion Prior research has shown that caregivers are accurate in identifying canonical babbling, a major prelinguistic vocalization milestone occurring at about 6–7 months of age. This indicates that caregivers are also well attuned to even earlier emerging vocalization types. This supports the value of continuing basic and clinical research on the vocal types infants produce in the 1st months of life and on their potential diagnostic utility, and may also help improve communication between speech-language pathologists and families.


2020 ◽  
Vol 68 (1) ◽  
pp. 48-58
Author(s):  
Chao Liu ◽  
Zongde Fang ◽  
Fang Guo ◽  
Long Xiang ◽  
Yabin Guan ◽  
...  

Presented in this study is investigation of dynamic behavior of a helical gear reduction by experimental and numerical methods. A closed-loop test rig is designed to measure vibrations of the example system, and the basic principle as well as relevant signal processing method is introduced. A hybrid user-defined element model is established to predict relative vibration acceleration at the gear mesh in a direction normal to contact surfaces. The other two numerical models are also constructed by lumped mass method and contact FEM to compare with the previous model in terms of dynamic responses of the system. First, the experiment data demonstrate that the loaded transmission error calculated by LTCA method is generally acceptable and that the assumption ignoring the tooth backlash is valid under the conditions of large loads. Second, under the common operating conditions, the system vibrations obtained by the experimental and numerical methods primarily occur at the first fourth-order meshing frequencies and that the maximum vibration amplitude, for each method, appears on the fourth-order meshing frequency. Moreover, root-mean-square (RMS) value of the acceleration increases with the increasing loads. Finally, according to the comparison of the simulation results, the variation tendencies of the RMS value along with input rotational speed agree well and that the frequencies where the resonances occur keep coincident generally. With summaries of merit and demerit, application of each numerical method is suggested for dynamic analysis of cylindrical gear system, which aids designers for desirable dynamic behavior of the system and better solutions to engineering problems.


Sign in / Sign up

Export Citation Format

Share Document