Cost-Specification Analysis: Design Concept Selection Based on Target Cost and Specifications

Author(s):  
Shun Takai ◽  
Kosuke Ishii

Abstract This paper proposes a new system design methodology called the Cost-Specification Analysis. The method seeks to satisfy both target cost and required functionality simultaneously. The method assumes that the worth of a product’s structure such as a main system, a sub-system, an assembly and a part, or its specifications is proportional to its degree of contribution to fulfill the customer needs. The paper first presents systematic procedure to allocate the importance of the “Voice of the Customer” to product’s structures and their specifications. The Cost-Specification Analysis evaluates design concept candidates based on the target cost of a structure calculated from its worth, and the target specifications. The design concept that satisfies both the target cost and the specifications should lead to larger customer satisfaction and financially successful product. The design concept selection of a particle beam control system in linear accelerator serves as an illustrative example.

2021 ◽  
Vol 26 (6) ◽  
pp. 1-20
Author(s):  
Mohammad-Ali Maleki ◽  
Alireza Nabipour-Meybodi ◽  
Mehdi Kamal ◽  
Ali Afzali-Kusha ◽  
Massoud Pedram

In this article, we present a low-energy inference method for convolutional neural networks in image classification applications. The lower energy consumption is achieved by using a highly pruned (lower-energy) network if the resulting network can provide a correct output. More specifically, the proposed inference method makes use of two pruned neural networks (NNs), namely mildly and aggressively pruned networks, which are both designed offline. In the system, a third NN makes use of the input data for the online selection of the appropriate pruned network. The third network, for its feature extraction, employs the same convolutional layers as those of the aggressively pruned NN, thereby reducing the overhead of the online management. There is some accuracy loss induced by the proposed method where, for a given level of accuracy, the energy gain of the proposed method is considerably larger than the case of employing any one pruning level. The proposed method is independent of both the pruning method and the network architecture. The efficacy of the proposed inference method is assessed on Eyeriss hardware accelerator platform for some of the state-of-the-art NN architectures. Our studies show that this method may provide, on average, 70% energy reduction compared to the original NN at the cost of about 3% accuracy loss on the CIFAR-10 dataset.


2020 ◽  
pp. 73-75
Author(s):  
B.M. Bazrov ◽  
T.M. Gaynutdinov

The selection of technological bases is considered before the choice of the type of billet and the development of the route of the technological process. A technique is proposed for selecting the minimum number of sets of technological bases according to the criterion of equality in the cost price of manufacturing the part according to the principle of unity and combination of bases at this stage. Keywords: part, surface, coordinating size, accuracy, design and technological base, labor input, cost price. [email protected]


Robotics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 7
Author(s):  
Ferdaws Ennaiem ◽  
Abdelbadiâ Chaker ◽  
Juan Sebastián Sandoval Arévalo ◽  
Med Amine Laribi ◽  
Sami Bennour ◽  
...  

This paper deals with the design of an optimal cable-driven parallel robot (CDPR) for upper limb rehabilitation. The robot’s prescribed workspace is identified with the help of an occupational therapist based on three selected daily life activities, which are tracked using a Qualisys motion capture system. A preliminary architecture of the robot is proposed based on the analysis of the tracked trajectories of all the activities. A multi-objective optimization process using the genetic algorithm method is then performed, where the cable tensions and the robot size are selected as the objective functions to be minimized. The cables tensions are bounded between two limits, where the lower limit ensures a positive tension in the cables at all times and the upper limit represents the maximum torque of the motor. A sensitivity analysis is then performed using the Monte Carlo method to yield the optimal design selected out of the non-dominated solutions, forming the obtained Pareto front. The robot with the highest robustness toward the disturbances is identified, and its dexterity and elastic stiffness are calculated to investigate its performance.


Proceedings ◽  
2021 ◽  
Vol 65 (1) ◽  
pp. 29
Author(s):  
Alessandro Pracucci ◽  
Sara Magnani ◽  
Laura Vandi ◽  
Oscar Casadei ◽  
Amaia Uriarte ◽  
...  

The nearly Zero Energy building (nZEB) renovation market is currently the key feature in the construction sector. RenoZEB aims to develop a systematic approach for retrofitting by assembling different technologies in a plug and play building envelope. This paper presents the methodology used to transform the RenoZEB concept in the design system. A multi-criteria decision matrix is used for the selection of the best façade technologies within the market while the analysis of the existing building conditions allows to develop a replicable approach for designing deep retrofitting intervention through a plug&play façade. The methodology appears to be a valuable support for the selection of technologies and allows to define a design guideline for the envelope.


2021 ◽  
Vol 13 (10) ◽  
pp. 5599
Author(s):  
Eko Supriyanto ◽  
Jayan Sentanuhady ◽  
Ariyana Dwiputra ◽  
Ari Permana ◽  
Muhammad Akhsin Muflikhun

Biodiesel has caught the attention of many researchers because it has great potential to be a sustainable fossil fuel substitute. Biodiesel has a non-toxic and renewable nature and has been proven to emit less environmentally harmful emissions such as hydrocarbons (HC), and carbon monoxide (CO) as smoke particles during combustion. Problems related to global warming caused by greenhouse gas (GHG) emissions could also be solved by utilizing biodiesel as a daily energy source. However, the expensive cost of biodiesel production, mainly because of the cost of natural feedstock, hinders the potential of biodiesel commercialization. The selection of natural sources of biodiesel should be made with observations from economic, agricultural, and technical perspectives to obtain one feasible biodiesel with superior characteristics. This review paper presents a detailed overview of various natural sources, their physicochemical properties, the performance, emission, and combustion characteristics of biodiesel when used in a diesel engine. The recent progress in studies about natural feedstocks and manufacturing methods used in biodiesel production were evaluated in detail. Finally, the findings of the present work reveal that transesterification is currently the most superior and commonly used biodiesel production method compared to other methods available.


2006 ◽  
Vol 74 (4) ◽  
pp. 777-784 ◽  
Author(s):  
Ronald D. Rogge ◽  
Rebecca J. Cobb ◽  
Lisa B. Story ◽  
Matthew D. Johnson ◽  
Erika E. Lawrence ◽  
...  

2015 ◽  
Vol 725-726 ◽  
pp. 105-110
Author(s):  
Aleksandr Birjukov ◽  
Sergey Bolotin

Surveys performed nationwide show that mobile temporary accommodation camps are being manufactured by more than 200 specialized enterprises (without considering the minor manufacturers) acting under different ministries and agencies. According to the analysis performed, today 26 basic mobile structural systems consisting of 18 conveyor-type and 8 demountable-type systems are being used on a national basis. Today national manufacturers are producing more than 250 types of container-type buildings and facilities which differ in functionality, capacity, climatic category, price and other technical-and-economic indexes. Use of mobile accommodation complexes is characterized by certain advantages. Basic criterion for mobile accommodation camp construction consists in its timely commissioning. Basic predicted indexes affecting the cost of temporary accommodation camp could serve as an endorsement of the forwarded standpoint.


2021 ◽  
Vol 104 (11) ◽  
pp. 1850-1865

Background: Cardiovascular (CV) and renal comorbidities are common among type 2 diabetes (T2D) patients, and significantly increase the cost and burden of care. Both sodium-glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1 RA) improve key outcomes including major CV events, hospitalization for heart failure, and renal outcomes, albeit to varying degrees in different T2D populations. Materials and Methods: The authors reviewed evidence from GLP-1 RA and SGLT2i CV outcomes trials and real-world studies in Thailand and elsewhere. Results: The authors formulated recommendations to guide selection of anti-diabetes medication based on patients’ clinical characteristics and CV or renal risk profile. Conclusion: These recommendations could help guide management of CV/renal comorbidities and risk alongside glucose-lowering therapy for individual patients. Keywords: Type 2 diabetes mellitus; Cardiovascular diseases; Chronic kidney disease; Clinical outcomes; SGLT2i; GLP-1 RA


2021 ◽  
pp. 28-32
Author(s):  

The possibilities for the development of bodywork in the context of the growing level of competition are analyzed in the article. The technological processes of bodywork are considered and the problem of choosing technological equipment is indicated. The statistical data about the efficiency indicators of company body divisions, operating in the body repair market in Krasnoyarsk, are presented. A composite quality index for the equipment of the bodywork department (using the example of body stocks) is proposed and calculated, and on its basis, some recommendations are given for companies which plan to enter the market of body repair services. Keywords: body production, body repair, body equipment, body production efficiency, selection of technological equipment


Sign in / Sign up

Export Citation Format

Share Document