Application of a Sliding Mode Observer for Dynamic Positioning of Ships

Author(s):  
Myung-Hyun Kim ◽  
Daniel J. Inman

Abstract A robust nonlinear observer, utilizing the sliding mode concept, is developed for the dynamic positioning of ships. The observer provides the estimates of linear velocities of the ship and bias from slowly varying environmental loads. It also niters out wave frequency motion to avoid wear of actuators and excessive fuel consumption. The main advantage of the proposed observer is in its robustness. In particular, the observer structure with a saturation function makes the proposed observer robust against neglected nonlinearities, disturbances and uncertainties. Since the mathematical model of DP ships is difficult to obtain and includes uncertainties and disturbances, it is very important for the observer to be robust. A nonlinear output feedback controller is derived based on the developed observer using the observer backstepping technique, and the global stability of the observer and control law is shown by Lyapunov stability theory. A set of simulations was carried out to investigate the performance of the proposed observer for dynamic positioning of a ship.

Author(s):  
Chidentree Treesatayapun

An adaptive discrete-time controller is developed for a class of practical plants when the mathematical model is unknown and the sampling time is nonconstant or unfixed. The data-driven model is established by the set of plant's input–output data under the pseudo-partial derivative (PPD) which represents the change of output with respect to the change of control effort. The multi-input fuzzy rule emulated network (MiFREN) is utilized to estimate PPD with an online-learning phase to tune all adjustable parameters of MiFREN with the convergence analysis. The proposed control law is developed by the discrete-time sliding mode control (DSMC), and the time-varying band is established according to the unfixed sampling time and unknown boundaries of disturbances and uncertainties. The prototype of direct current-motor current control with uncontrolled-sampling time is constructed to validate the performance of the proposed controller.


2019 ◽  
pp. 20-66
Author(s):  
Heba Elkholy ◽  
Maki K. Habib

This chapter presents the detailed dynamic model of a Vertical Take-Off and Landing (VTOL) type Unmanned Aerial Vehicle (UAV) known as the quadrotor. The mathematical model is derived based on Newton Euler formalism. This is followed by the development of a simulation environment on which the developed model is verified. Four control algorithms are developed to control the quadrotor's degrees of freedom: a linear PID controller, Gain Scheduling-based PID controller, nonlinear Sliding Mode, and Backstepping controllers. The performances of these controllers are compared through the developed simulation environment in terms of their dynamic performance, stability, and the effect of possible disturbances.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Shengjiang Yang ◽  
Jianguo Guo ◽  
Jun Zhou

A new integrated guidance and control (IGC) law is investigated for a homing missile with an impact angle against a ground target. Firstly, a control-oriented model with impact angle error of the IGC system in the pitch plane is formulated by linear coordinate transformation according to the motion kinematics and missile dynamics model. Secondly, an IGC law is proposed to satisfy the impact angle constraint and to improve the rapidity of the guidance and control system by combining the sliding mode control method and nonlinear extended disturbance observer technique. Thirdly, stability of the closed-loop guidance and control system is proven based on the Lyapunov stability theory, and the relationship between the accuracy of the impact angle and the estimate errors of nonlinear disturbances is derived from stability of the sliding mode. Finally, simulation results confirm that the proposed IGC law can improve the performance of the missile guidance and control system against a ground target.


2008 ◽  
Vol 381-382 ◽  
pp. 195-198 ◽  
Author(s):  
Yoshikazu Arai ◽  
S.Y. Dian ◽  
Wei Gao

In this study, a novel control law including a fine-tuned PID component to yield basic dynamic performance, and a component derived from the Sliding Mode Observer (SMO) to estimate and then compensate for modeling uncertainties and disturbances, has been introduced to planar actuator of an ultra-precision positioning stage. Experimental results are presented to verify the effectiveness of suggested dynamic compensation strategy and tracking performance of the non-contact planar actuator.


Author(s):  
Heba Elkholy ◽  
Maki K. Habib

This chapter presents the detailed dynamic model of a Vertical Take-Off and Landing (VTOL) type Unmanned Aerial Vehicle (UAV) known as the quadrotor. The mathematical model is derived based on Newton Euler formalism. This is followed by the development of a simulation environment on which the developed model is verified. Four control algorithms are developed to control the quadrotor's degrees of freedom: a linear PID controller, Gain Scheduling-based PID controller, nonlinear Sliding Mode, and Backstepping controllers. The performances of these controllers are compared through the developed simulation environment in terms of their dynamic performance, stability, and the effect of possible disturbances.


Author(s):  
Linjie Xin ◽  
◽  
Qinglin Wang ◽  
Yuan Li ◽  
Jinhua She ◽  
...  

This study investigates the terminal sliding mode (TSM) control for a class of first-order uncertain systems with dead-zone and saturation. First, a new adaptive TSM control law was proposed for the single-input and single-output (SISO) systems by employing an integral fast TSM. It achieves rejection for both system uncertainty and input nonlinearity. The global reaching condition of the sliding mode is guaranteed by the Lyapunov stability theory. The new control law possesses faster convergence than the linear sliding mode method, and the singularity problem of TSM is avoided. Then, the control law was extended for tracking control of a dynamic model of spacecraft which was a multi-input and multi-output (MIMO) system. Finally, the simulation results confirmed the effectiveness of the proposed control method.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Sy Dung Nguyen ◽  
Dongsoo Jung ◽  
Seung-Bok Choi

This work proposes a novel adaptive type 2 fuzzy sliding controller (AT2FC) for vibration control of magnetorheological damper- (MRD-) based railway suspensions subjected to uncertainty and disturbance (UAD). The AT2FC is constituted of four main parts. The first one is a sliding mode controller (SMC) for specifying the main damping force supporting the suspension. This controller is designed via Lyapunov stability theory. The second one is an interpolation model based on an interval type 2 fuzzy logic system for determination of optimal parameters of the SMC. The third one is a nonlinear UAD observer to compensate for external disturbances. The fourth one is an inverse MRD model (T2F-I-MRD) for specifying the input current. In the operating process, an adaptively optimal structure deriving from the SMC is created (called the Ad-op-SMC) to adapt to the real status. Working as an actuator, the input current for MRD is then determined by the T2F-I-MRD to generate the required damping force which is estimated by the Ad-op-SMC and the nonlinear observer. It is shown that the obtained survey results reflect the AT2FC’s excellent vibration control performance compared with the other controllers.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1249
Author(s):  
Saleh Mobayen ◽  
Farhad Bayat ◽  
Chun-Chi Lai ◽  
Asghar Taheri ◽  
Afef Fekih

This paper proposes a novel adaptive intelligent global sliding mode control for the tracking control of a DC-DC buck converter with time-varying uncertainties/disturbances. The proposed control law is formulated using a switching surface that eliminates the reaching phase and ensures the existence of the sliding action from the start. The control law is derived based on the Lyapunov stability theory. The effectiveness of the proposed approach is illustrated via high-fidelity simulations by means of Simscape simulation environment in MATLAB. Satisfactory tracking accuracy, efficient suppression of the chattering phenomenon in the control input, and high robustness against uncertainties/disturbances are among the attributes of the proposed control approach.


2020 ◽  
Vol 8 (5) ◽  
pp. 4159-4163

A flexible link manipulator (FLM) has become the globally research topic over last two decades. It has various advantages such as light weight, high speed with low inertia, large work space and consumes less energy comparatively. However, this flexibility make system more complex. The FLM performance is measured in terms of accuracy of trajectory tracking with minimum oscillations. But in case of FLM, due to flexibility, oscillation and accuracy in trajectory has been increased. To overcome this problem, a robust nonlinear observer based sliding mode controller (SMC) has been used in this paper. Moreover, dynamics modelling of FLM has been developed using Lagrange Method. To enhance the tracking of FLM, integral sliding mode controller (i-SMC) has been designed. The effectiveness of these controller has been tested in presence of disturbances at each state and result obtained are demonstrated


Sign in / Sign up

Export Citation Format

Share Document