Maximizing Walking Step Length for a Near Omni-Directional Hexapod Robot

Author(s):  
James P. Schmiedeler ◽  
Nathan J. Bradley ◽  
Brett Kennedy

A foot path planning algorithm is presented for a robot with six limbs symmetrically located on the faces of its hexagonal body, enabling it to walk at a constant height with an alternating tripod gait. The symmetry results in near omni-directional locomotion capability, so the algorithm is formulated for walking in any direction and at any height. The approach is to determine the maximum length foot path through each limb’s workspace and then modify those foot paths based upon static stability analysis. The stability analysis is conducted in two phases to ensure stability without excessively reducing step length. Compared to an optimization approach, the algorithm yields foot paths within 9.1% of the maximal foot paths for all directions and heights. Unlike the optimization approach, the developed algorithm is computationally efficient enough to be implemented in realtime.

2008 ◽  
Vol 33-37 ◽  
pp. 1101-1108
Author(s):  
Zhi Chun Yang ◽  
Wei Xia

An investigation on the stability of heated panels in supersonic airflow is performed. The nonlinear aeroelastic model for a two-dimensional panel is established using Galerkin method and the thermal effect on the panel stiffness is also considered. The quasi-steady piston theory is employed to calculate the aerodynamic load on the panel. The static and dynamic stabilities for flat panels are studied using Lyapunov indirect method and the stability boundary curve is obtained. The static deformation of a post-buckled panel is then calculated and the local stability of the post-buckling equilibrium is analyzed. The limit cycle oscillation of the post-buckled panel is simulated in time domain. The results show that a two-mode model is suitable for panel static stability analysis and static deformation calculation; but more than four modes are required for dynamic stability analysis. The effects of temperature elevation and dimensionless parameters related to panel length/thickness ratio, material density and Mach number on the stability of heated panel are studied. It is found that panel flutter may occur at relatively low aerodynamic pressure when several stable equilibria exist for the aeroelastic system of heated panel.


2021 ◽  
pp. 29-35
Author(s):  
Ilya A. Gulyaev Gulyaev ◽  
Evgeniy P. Ronnov

. A method of stability analysis for combined ship (oil carrier/platform ship type) at the stage of design study is presented. It should be noted that not all of ship’s main seaworthiness and operational characteristics are the result of a simple addition of the characteristics of an oil carrier and a platform ship. Their mutual influence takes place, which should be taken into account when analysing the stability in the multivariant optimization problems of internal and external design of such ships. This leads to the requirement to adjust the known methods of stability analysis at the initial stages of ship design, which was the purpose of the present work and its originality. Taking into account the multivariance of the task and the hull design type, the stability assessment will be carried out through the analysis of the metacentric height extreme value on the assumption that the requirements of Russian River Register for admissible heeling angle at static wind effect are met. In order to account for nonlinearity of static stability curve when inclining up to the angles of deck immersion into water and emergence of bilge, it is suggested to apply an approximate method of metacentric radius determination. The proposed method of combined ship stability assessment is recommended to apply at the stage of justification and analysis of ship’s key elements as a limitation in the problems of mathematical modeling of optimization of such type of ships. The method allows to exclude from further consideration at the design study stage the possible options that do not meet the requirements of seaworthiness.


2013 ◽  
Vol 572 ◽  
pp. 636-639
Author(s):  
Xi Chen ◽  
Gang Wang

This paper deals with the walking stability analysis of a multi-legged crablike robot over slope using normalized energy stability margin (NESM) method in order to develop a common stabilization description method and achieve robust locomotion for the robot over rough terrains. The robot is simplified with its static stability being described by NESM. The mathematical model of static stability margin is built so as to carry out the simulation of walking stability over slope for the crablike robot that walks in double tetrapod gait. As a consequence, the relationship between stability margin and the height of the robots centroid, as well as its inclination relative to the ground is calculated by the stability criterion. The success and performance of the stability criterion proposed is verified through MATLAB simulation and real-world experiments using multi-legged crablike robot.


Author(s):  
Daniel A. Sierra ◽  
Paul McCullough ◽  
Nejat Olgac ◽  
Eldridge Adams

We consider hostile conflicts between two multi-agent swarms. First, we investigate the complex nature of a single pursuer attempting to intercept a single evader (1P-1E), and establish some rudimentary rules of engagement. We elaborate on the stability repercussions of these rules. Second, we extend the modelling and stability analysis between multi-agent swarms of pursuers and evaders. The present document considers only swarms with equal membership strengths for simplicity. This effort is based on a set of suggested momenta deployed on individual agents. Due to the strong nonlinearities, Lyapunov-based stability analysis is used. The control of a group pursuit is divided into two phases: the approach phase during which the two swarms act like individuals in the 1P-1E interaction; and the assigned pursuit phase where each pursuer is assigned to an evader. A dissipative control momentum was suggested in an earlier publication, which caused undesirable control chatter. This study introduces a distributed control logic which ameliorates the chatter problems considerably.


Author(s):  
A Lazarowska

The research presented in this paper is dedicated to the development of a path planning algorithm for a moving object in a dynamic environment. The marine environment constitutes the application area. A graph theory-based path planning method for ships is introduced and supported by the results of simulation tests and comparative analysis with a heuristic Ant Colony Optimization approach. The method defines the environment with the use of a visibility graph and uses the A* algorithm to find the shortest, collision-free path. The main contribution is the development of an effective graph theory-based algorithm for path planning in an environment with static and dynamic obstacles. The computational time does not exceed a few seconds. Obtained results allow to state that the method is suitable for use in an intelligent motion control system for ships.


2013 ◽  
Vol 788 ◽  
pp. 598-601
Author(s):  
Jun Qiang Wu ◽  
Yu Cui

This single-layer spherical reticulated shell has the advantages of reasonable stress,beautiful appearance ,fast construction,is widely applied in practical engineering. Through the static stability analysis of three kinds of single-layer spherical lattice shell structure using ansys, we get them in the uniform deformation under static load, the modal, buckling load. The results show that: The Kiewitt latticed shells displacement is small, structure is stable, better than SchwedLer and lianfang.


2021 ◽  
Vol 6 (2) ◽  
pp. 898
Author(s):  
Sunday Emmanuel Fadugba ◽  
Roseline Bosede Ogunrinde ◽  
Rowland Rotimi Ogunrinde

This paper presents the stability analysis of a proposed scheme of order five (FCM) for first order Ordinary Differential Equations (ODEs). The proposed FCM is derived by means of an interpolating function of polynomial and exponential forms. The properties of FCM were discussed extensively. The linear stability of FCM in the context of the Third Order One-Step Method (TCM) and Second Order One-Step Method (SCM) for the solution of initial value problems of first order differential equations is presented. The stability region of FCM, TCM and SCM is investigated using the Dahlquist’s test equation. The numerical results obtained via FCM are compared with TCM and SCM. Moreover, by varying the step length, the accuracy and convergence of the methods in terms of the final absolute relative error are measured. The results show that FCM converges faster and more stable than its counterparts.


Author(s):  
Andreas Rauch ◽  
William Singhose ◽  
Daichi Fujioka ◽  
Taft Jones

Mobile boom cranes are used throughout the world to perform important and dangerous manipulation tasks. The usefulness of these cranes is greatly improved if they can utilize their mobile base when they lift and transfer a payload. However, crane motion induces payload swing. The tip-over stability is degraded by the payload oscillations. This paper presents a process for conducting a stability analysis of such cranes. As a first step, a static stability analysis is conducted to provide basic insights into the effects of the payload weight and crane configuration. Then, a semi-dynamic method is used to account for payload swing. The results of a full-dynamic stability analysis using a multibody simulation of a boom crane are then compared to the outcomes of the simpler approaches. The comparison reveals that the simple semi-dynamic analysis provides good approximations for the tip-over stability properties. The results of the stability analyses are verified by experiments. The analysis in this paper provides useful guidance for the practical tip-over stability analysis of mobile boom cranes and motivates the need to control payload oscillation.


2014 ◽  
Vol 989-994 ◽  
pp. 1621-1625
Author(s):  
Shu Jun Wang ◽  
Xiao Nian Wang ◽  
Ping Jiang

This paper proposes a new path planning algorithm based on the CNN model. The path planning problem is completed with the dynamics of CNN by establishing a relationship between path control points and CNN cells. Based on the analysis of one dimensional space of CNN algorithm, a CNN equation is constructed and the path updating algorithm under the curvature constraint is obtained, then the stability of the algorithm is discussed. Path planning simulation based on two-dimensional space shows that this algorithm can avoid re-planning or falling into the local minimum, which means it can be successfully used in the path planning and maintenance of robots on the ground in dynamic environment.


Author(s):  
Prahar Bhatt ◽  
Ashish Kulkarni ◽  
Rishi K. Malhan ◽  
Brual Shah ◽  
Yeo Jung Yoon ◽  
...  

Abstract Conventional material extrusion additive manufacturing (AM) processes require the user to make a trade-off between surface quality and build time of the part. The use of a large bead filament deposition can speed up the build process; however, it leads to surfaces with high roughness due to the stair-stepping effect. The surface quality can be improved by using a small bead filament deposition, which in turn increases the build time of the part. We present a new approach incorporating hybrid multi-resolution layers in material extrusion additive manufacturing to provide excellent surface quality without increasing the build time. Our slicing algorithm generates planar layers with large filament to fill the interior regions in less time. The generated exterior layers are conformal and use small filament to reduce the stair-stepping effect and improve surface quality. We also present a path planning algorithm to build parts with a single manipulator using a multi-nozzle extrusion tool. The path planning algorithm generates a smooth material deposition path by avoiding collision between the tool and the already built layers. It reduces the collision checks and performs collision detection in a computationally efficient manner. We build five parts to validate our approach and illustrate the benefits of multi-resolution AM.


Sign in / Sign up

Export Citation Format

Share Document