Generating Spiral Paths for Sculptured Surfaces Machining

Author(s):  
Zhiyang Yao

To machine sculptured surfaces, ball end mills are mainly used to reach the final surface finish requirements. During machining, the cusp height is one of the major factors defining the final surface finish smoothness. A cutter path that maintains a high cutting efficiency as well as a constant cusp height is desired. Spiral curves, with the property of not requiring extra linkage segments between two adjacent arms can be used to generate a smooth cutter path. In this paper, a geometric algorithm for generating spiral cutter paths for ball end milling in machining sculptured surfaces is presented.

Author(s):  
Zhiyang Yao

In fabricating free-form surfaces, ball end mills are mainly used to reach the final surface finish requirements. In the milling processes, cutter engagement value measures what portion of the cutter is involved in machining at a given instant of time. This paper presents geometric algorithms for estimating cutter engagement values for ball end milling processes of tessellated free-form surfaces. The cutter engagement value calculated here can be used later on in generating efficient cutter paths, as well as performing adaptive feed rate controls.


2013 ◽  
Vol 7 (3) ◽  
pp. 292-299 ◽  
Author(s):  
Masahiro Hagino ◽  
◽  
Takashi Inoue ◽  

Carbon Fiber Reinforced Plastics (CFRP) have outstanding lightweight material characteristics and tensile strength. The use of CFRP in aerospace industry has been successfully implemented and is expected to grow in the future. However, the mechanical properties of CFRP are affected by differences in the distribution and orientation of the carbon fibers and their adhesion to the binding material. CFRP shows intense anisotropy in strength of carbon fiber depending on its mechanical properties and the state of the carbon fiber orientation. Therefore, the tool life shortest and the surface finish quality of the material becomes unstable and eventually difficult to cut. This paper presents the effect on carbon fiber orientation and helix angle with CFRP cutting characteristics by end milling. Here, three types of orientations weremachined by straight type end mills and constant cutting conditions with a cutting speed 70 m/min, a feed rate 0.056 mm/tooth and 3 mm depth of cut. Our results showed that the tool helix angle 0° gave a better surface finish than the other tools, irrespective of the fiber orientation. The helix angle is greatly affected by the exposure of the fibers from the surface. Axial force (Fz) is negligible quantity for helix angle 0°, and cutting force is low. The carbon fiber orientation of 45° and -45° has exfoliation-like dimples.


2014 ◽  
Vol 657 ◽  
pp. 93-97 ◽  
Author(s):  
Vlad Diciuc ◽  
Mircea Lobonțiu

The ball nose end mills are highly used for complex sculptured surfaces in 3-5 axes milling. The modeling of the cutting process using ball nose end mills is more complex than in the case of simple end mills due to the fact that the cutting speed varies continuously along the cutting edge. By tilting the cutting tool relative to the surface to be machined, the modeling is getting more complicated due to the large number of input variables. This paper presents a review of the main modeling types, underlining the specificity, the advantages and disadvantages for each type in comparison to an own research on a parametric CAD model. There are also recommendations made towards the modeling process, based on the results obtained by the authors.


2015 ◽  
Vol 656-657 ◽  
pp. 391-397 ◽  
Author(s):  
Takashi Inoue ◽  
Masahiro Hagino ◽  
Kazushige Tokuno ◽  
Hiroshi Usuki ◽  
Junji Miyamoto

Recently, carbon fiber reinforced plastics (CFRP) are expected to be used more in the aerospace and automotive industries, because of their outstanding lightweight material characteristics and tensile strength [1][2]. Underlying this are problems closely related to improvement of the earth’s environment. However, a mechanical property is influenced by the difference in the distribution state of the carbon fiber, and the adhesion intensity of the binding material. Moreover, they have the characteristic of intense anisotropy, strength wise depending on the orientation of the carbon fibers [3][4]. Therefore, CFRPs are considered difficult-to-machine materials [5], because the surface finish deteriorates according to the carbon fiber orientation. Establishing the optimal cutting conditions to solve such problems also from an economical viewpoint is essential. In our study, end milling operations of different carbon fiber orientation CFRP composite material were investigated with three kinds of different helix angle end mills. Evaluations were based on the surface finish, cutting force and cutting temperature. Moreover, the relationships between the carbon fiber orientation and the machining operations were determined. We earlier evaluated the machinability from the relationship between carbon fiber orientation and tool helix angle by down-cut milling to solve these problems [6]. In this study, machining operations of different carbon fiber orientation CFRP composite material were investigated with three kinds of different helix angle end mills by up-cut milling. Evaluations were based on the surface finish, cutting force and cutting temperature. Moreover, the results of this experiment were compared with the results of down-cut milling.


2011 ◽  
Vol 328-330 ◽  
pp. 560-564
Author(s):  
Ba Sheng Ouyang ◽  
Guo Xiang Lin ◽  
Yong Hui Tang

Cutting forces and machining error in contouring of concave and convex surfaces using helical ball end mills are theoretically investigated. The cutting forces are evaluated based on the theory of oblique cutting. The machining errors resulting from the tool deflections due to these forces are evaluated at various points of the machined surface. The influence of various cutting conditions and cutting modes on machining error is investigated and discussed.


2012 ◽  
Vol 576 ◽  
pp. 41-45
Author(s):  
A.K.M. Nurul Amin ◽  
M.A. Mahmud ◽  
M.D. Arif

The majority of semiconductor devices are made up of silicon wafers. Manufacturing of high-quality silicon wafers includes numerous machining processes, including end milling. In order to end mill silicon to a nano-meteric surface finish, it is crucial to determine the effect of machining parameters, which influence the machining transition from brittle to ductile mode. Thus, this paper presents a novel experimental technique to study the effects of machining parameters in high speed end milling of silicon. The application of compressed air, in order to blow away the chips formed, is also investigated. The machining parameters’ ranges which facilitate the transition from brittle to ductile mode cutting as well as enable the attainment of high quality surface finish and integrity are identified. Mathematical model of the response parameter, the average surface roughness (Ra) is subsequently developed using RSM in terms of the machining parameters. The model was determined, by Analysis of Variance (ANOVA), to have a confidence level of 95%. The experimental results show that the developed mathematical model can effectively describe the performance indicators within the controlled limits of the factors that are being considered.


Author(s):  
Yuan-Shin Lee ◽  
Tien-Chien Chang

Abstract In modern product design, sculptured surfaces are commonly used for functional and artistic shape design. Design of sculptured surfaces is evolutionary, consisting primarily of incremental changes to existing part surfaces. Manual operation planning for sculptured surface machining is known to be error-prone and inefficient, which requires considerable checking, verification, and rework. Five-axis machining has higher productivity and better machining quality than 3-axis machining. However, the programming for 5-axis machining is more difficult due to the complex simultaneous cutter movements along the machine’s five axes. This paper presents a systematic methodology to generate operation plans for 5-axis sculptured surface machining. A complete operation plan and the error-free cutter path can be automatically generated from the CAD part design. To achieve design for manufacturing of sculptured surface products, the machining unfeasibility information can be fed back to the designer for further design modification. Results of computer implementation and testing examples are also presented.


2014 ◽  
Vol 68 (4) ◽  
Author(s):  
M. S. Said ◽  
J. A. Ghani ◽  
R. Othman ◽  
M. A. Selamat ◽  
N. N. Wan ◽  
...  

The purpose of this research is to demonstrate surface roughness and chip formation by the machining of Aluminium silicon alloy (AlSic) matrix composite, reinforced with aluminium nitride (AlN), with three types of carbide inserts present. Experiments were conducted at various cutting speeds, feed rates, and depths of cut, according to the Taguchi method, using a standard orthogonal array L9 (34). The effects of cutting speeds, feed rates, depths of cut, and types of tool on surface roughness during the milling operation were evaluated using Taguchi optimization methodology, using the signal-to-noise (S/N) ratio. The surface finish produced is very important in determining whether the quality of the machined part is within specification and permissible tolerance limits. It is understood that chip formation is a fundamental element that influences tool performance. The analysis of chip formation was done using a Sometech SV-35 video microscope. The analysis of results, using the S/N ratio, concluded that a combination of low feed rate, low depth of cut, medium cutting speed, and an uncoated tool, gave a remarkable surface finish. The chips formed from the experiment varied from semi–continuous to discontinuous. 


Sign in / Sign up

Export Citation Format

Share Document