scholarly journals Effect of Carbon Fiber Orientation and Helix Angle on CFRP Cutting Characteristics by End-Milling

2013 ◽  
Vol 7 (3) ◽  
pp. 292-299 ◽  
Author(s):  
Masahiro Hagino ◽  
◽  
Takashi Inoue ◽  

Carbon Fiber Reinforced Plastics (CFRP) have outstanding lightweight material characteristics and tensile strength. The use of CFRP in aerospace industry has been successfully implemented and is expected to grow in the future. However, the mechanical properties of CFRP are affected by differences in the distribution and orientation of the carbon fibers and their adhesion to the binding material. CFRP shows intense anisotropy in strength of carbon fiber depending on its mechanical properties and the state of the carbon fiber orientation. Therefore, the tool life shortest and the surface finish quality of the material becomes unstable and eventually difficult to cut. This paper presents the effect on carbon fiber orientation and helix angle with CFRP cutting characteristics by end milling. Here, three types of orientations weremachined by straight type end mills and constant cutting conditions with a cutting speed 70 m/min, a feed rate 0.056 mm/tooth and 3 mm depth of cut. Our results showed that the tool helix angle 0° gave a better surface finish than the other tools, irrespective of the fiber orientation. The helix angle is greatly affected by the exposure of the fibers from the surface. Axial force (Fz) is negligible quantity for helix angle 0°, and cutting force is low. The carbon fiber orientation of 45° and -45° has exfoliation-like dimples.

2015 ◽  
Vol 656-657 ◽  
pp. 391-397 ◽  
Author(s):  
Takashi Inoue ◽  
Masahiro Hagino ◽  
Kazushige Tokuno ◽  
Hiroshi Usuki ◽  
Junji Miyamoto

Recently, carbon fiber reinforced plastics (CFRP) are expected to be used more in the aerospace and automotive industries, because of their outstanding lightweight material characteristics and tensile strength [1][2]. Underlying this are problems closely related to improvement of the earth’s environment. However, a mechanical property is influenced by the difference in the distribution state of the carbon fiber, and the adhesion intensity of the binding material. Moreover, they have the characteristic of intense anisotropy, strength wise depending on the orientation of the carbon fibers [3][4]. Therefore, CFRPs are considered difficult-to-machine materials [5], because the surface finish deteriorates according to the carbon fiber orientation. Establishing the optimal cutting conditions to solve such problems also from an economical viewpoint is essential. In our study, end milling operations of different carbon fiber orientation CFRP composite material were investigated with three kinds of different helix angle end mills. Evaluations were based on the surface finish, cutting force and cutting temperature. Moreover, the relationships between the carbon fiber orientation and the machining operations were determined. We earlier evaluated the machinability from the relationship between carbon fiber orientation and tool helix angle by down-cut milling to solve these problems [6]. In this study, machining operations of different carbon fiber orientation CFRP composite material were investigated with three kinds of different helix angle end mills by up-cut milling. Evaluations were based on the surface finish, cutting force and cutting temperature. Moreover, the results of this experiment were compared with the results of down-cut milling.


2014 ◽  
Vol 68 (4) ◽  
Author(s):  
M. S. Said ◽  
J. A. Ghani ◽  
R. Othman ◽  
M. A. Selamat ◽  
N. N. Wan ◽  
...  

The purpose of this research is to demonstrate surface roughness and chip formation by the machining of Aluminium silicon alloy (AlSic) matrix composite, reinforced with aluminium nitride (AlN), with three types of carbide inserts present. Experiments were conducted at various cutting speeds, feed rates, and depths of cut, according to the Taguchi method, using a standard orthogonal array L9 (34). The effects of cutting speeds, feed rates, depths of cut, and types of tool on surface roughness during the milling operation were evaluated using Taguchi optimization methodology, using the signal-to-noise (S/N) ratio. The surface finish produced is very important in determining whether the quality of the machined part is within specification and permissible tolerance limits. It is understood that chip formation is a fundamental element that influences tool performance. The analysis of chip formation was done using a Sometech SV-35 video microscope. The analysis of results, using the S/N ratio, concluded that a combination of low feed rate, low depth of cut, medium cutting speed, and an uncoated tool, gave a remarkable surface finish. The chips formed from the experiment varied from semi–continuous to discontinuous. 


2011 ◽  
Vol 264-265 ◽  
pp. 1193-1198
Author(s):  
Mokhtar Suhaily ◽  
A.K.M. Nurul Amin ◽  
Anayet Ullah Patwari

Surface finish and dimensional accuracy is one of the most important requirements in machining process. Inconel 718 has been widely used in the aerospace industries. High speed machining (HSM) is capable of producing parts that require little or no grinding/lapping operations within the required machining tolerances. In this study small diameter tools are used to achieve high rpm to facilitate the application of low values of feed and depths of cut to investigate better surface finish in high speed machining of Inconel 718. This paper describes mathematically the effect of cutting parameters on Surface roughness in high speed end milling of Inconel 718. The mathematical model for the surface roughness has been developed in terms of cutting speed, feed rate, and axial depth of cut using design of experiments and the response surface methodology (RSM). Central composite design was employed in developing the surface roughness models in relation to primary cutting parameters. Machining were performed using CNC Vertical Machining Center (VMC) with a HES510 high speed machining attachment in which using a 4mm solid carbide fluted flat end mill tool. Wyko NT1100 optical profiler was used to measure the definite machined surface for obtaining the surface roughness data. The predicted results are in good agreement with the experimental one and hence the model can be efficiently used to predict the surface roughness value with in the specified cutting conditions limit.


2009 ◽  
Vol 83-86 ◽  
pp. 56-66 ◽  
Author(s):  
Mohd Amri Lajis ◽  
A.K.M. Nurul Amin ◽  
A.N. Mustafizul Karim ◽  
A.M.K. Hafiz

This study was conducted to investigate the effect of preheating through inductive heating mechanism in end milling of AISI D2 hardened steel (60-62 HRC) by using coated carbide tool inserts. Apart from preheating, two other machining parameters such as cutting speed and feed were varied while the depth of cut constant was kept constant. Tool wear phenomenon and machined surface finish were found to be significantly affected by preheating temperature and other two variables. End milling operation was performed on a Vertical Machining Centre (VMC). Preheating of the work material to a higher temperature range resulted in a noticeable reduction in tool wear rate leading to a longer tool life. In addition, improved surface finish was obtained with surface roughness values lower than 0.4 μm, leaving a possibility of skipping the grinding and polishing operations for certain applications.


Author(s):  
Seyedbehzad Ghafarizadeh ◽  
Jean-François Chatelain ◽  
Gilbert Lebrun

The surface machining of Carbon Fiber Reinforced Plastics (CFRP) materials is a challenging process, given the heterogeneity and anisotropic nature of these composites, which, combined with the abrasiveness of the fibers involved, can produce some surface damage and extensive tool wear. The cutting temperature is one of the most important factors associated with the tool wear rate and machinability of these materials, which are also affected by the mechanical and thermal properties of the work material and the cutting conditions. In this work, the cutting temperature, forces and surface roughness were measured under different cutting conditions during the ball-end milling of unidirectional CFRP. Cutting speeds ranging from 200 to 350 m/min, a feed rate of 0.063 mm/rev, fiber orientation of (the angle between carbon fibers and feed direction) 0, 45, 90 and 135 degrees, and a 0.5 mm depth of cut were used. The results show that the cutting speed and fiber orientation have a significant influence on the cutting temperature and cutting force. The maximum and minimum cutting forces and temperature were achieved for fiber orientations of 90 and 0 degrees, respectively.


2011 ◽  
Vol 264-265 ◽  
pp. 888-893
Author(s):  
Mokhtar Suhaily ◽  
A.K.M. Nurul Amin ◽  
Anayet Ullah Patwari

Surface finish and dimensional accuracy is one of the most important requirements in machining process. Inconel 718 has been widely used in the aerospace industries. High speed machining (HSM) is capable of producing parts that require little or no grinding/lapping operations within the required machining tolerances. In this study small diameter tools are used to achieve high rpm to facilitate the application of low values of feed and depths of cut to investigate better surface finish in high speed machining of Inconel 718. This paper describes mathematically the effect of cutting parameters on Surface roughness in high speed end milling of Inconel 718. The mathematical model for the surface roughness has been developed in terms of cutting speed, feed rate, and axial depth of cut using design of experiments and the response surface methodology (RSM). Central composite design was employed in developing the surface roughness models in relation to primary cutting parameters. Machining were performed using CNC Vertical Machining Center (VMC) with a HES510 high speed machining attachment in which using a 4mm solid carbide fluted flat end mill tool. Wyko NT1100 optical profiler was used to measure the definite machined surface for obtaining the surface roughness data. The predicted results are in good agreement with the experimental one and hence the model can be efficiently used to predict the surface roughness value with in the specified cutting conditions limit.


Mechanik ◽  
2019 ◽  
Vol 92 (10) ◽  
pp. 649-651
Author(s):  
Krzysztof Ciecieląg ◽  
Kazimierz Zaleski ◽  
Krzysztof Kęcik

In this paper, the impact of milling process parameters on the roughness of surface of glass and carbon fiber reinforced plastics was analyzed. The influence of feed per tooth, cutting speed and depth of cut on selected surface roughness parameters was determined. It was found that the surface roughness after milling carbon fiber reinforced plastics was greater compared to the surface of glass fiber reinforced plastics.


1970 ◽  
Vol 3 (2) ◽  
Author(s):  
A.K.M.N. AMIN, M. IMRAN AND M. ARIF

Stainless steels are a group of difficult to machine work materials. The difficulty in machining stainless steels is manifested in high contact length and stresses, formation of serrated chips and development of chatter resulting in high tool wear rates and poor machined surface finish. The paper focuses on the performance of TiN coated-carbide inserts in machining stainless steel specimens in end milling operation performed on vertical machining centre (VMC). The performance of the tool is evaluated from the point of view of its wear intensity, mechanism of failure and generation and effect of chatter on tool wear and vice versa. The investigations were aimed at determining the effect of cutting parameters, specifically cutting speed, feed and depth of cut, on chatter amplitude, tool wear rate, mechanism of tool wear and using these data and machined surface roughness values from previous work to come up with recommended values of cutting parameters for semi-finish and finish end milling operation of stainless steel work materials. For recording vibration signals a dual channel portable signal analyzers was used and the signals were analyzed using Pulse Multi-analyzer version 4.2 software. Tool wear was measured using an optical microscope with digital readout capabilities along 3 axes. The tool wear mechanisms were studied under a scanning electron microscope (SEM). Results of the investigation show that acceleration amplitudes generally increase with cutting speed and the magnitude of tool flank wears. It has been also found that an increase in feed and depth of cut leads to higher acceleration amplitudes. The most common wear mechanisms observed during machining of stainless steel are attrition, micro and macro chipping of the tool at lower cutting speeds, and diffusion and mechanical failures due to intensive chatter at higher speeds. It has been also established that stable cutting speeds with relatively low tool wear intensity and satisfactory machined surface finish can be achieved through proper selection of cutting parameters. A table of recommended cutting conditions has been developed for almost chatter free machining with low tool wear intensity and satisfactory surface finish. Key Words: Vertical Machining Centre, Machinability, Chatter, Cutting, Tool life.


2021 ◽  
pp. 096739112199128
Author(s):  
Abburi Lakshman Kumar ◽  
M Prakash

In recent years, glass fiber-reinforced polymer (GFRP) composite materials have become a viable alternative material for different engineering applications due to their superior/excellent properties. The strength of the composite is positively related to the orientation of the fiber material. However, the machinability is still a problem when components are manufactured using the GFRP composites due to their anisotropic properties. The aim of this analytical research paper is to investigate the influence of fiber orientation on the strength and machinability in slot milling of GFRP fabricated using the vacuum infusion method. The fiber orientations of 0°/90° and ±45° are used for the fabrication of GFRP composite laminates. The experiments were conducted using an orthogonal array. Analysis of variance was employed to determine the influence of milling parameters such as cutting speed, transverse feed rate, and axial depth of cut (A.D.O.C.) for the surface finish (Ra), cutting force, and Machinability index (MI). The MI is calculated based on specific cutting pressure. The influence of fiber orientation on the cutting force and surface topography was analyzed. It was concluded that the cutting forces were significantly influenced by the fiber orientation and not affected by the machining parameters. The results revealed that the transverse feed rate was the primary influencing parameter responsible for the increase in MI (40 to 56%). The A.D.O.C. was accountable for the increase in cutting force (55 to 94%). Similarly, the cutting speed influenced Ra, which increased from 17 to 37%.


2010 ◽  
Vol 447-448 ◽  
pp. 51-54
Author(s):  
Mohd Fazuri Abdullah ◽  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Abu Bakar Sulong ◽  
Jaharah A. Ghani

The effects of different cutting parameters, insert nose radius, cutting speed and feed rates on the surface quality of the stainless steel to be use in medical application. Stainless steel AISI 316 had been machined with three different nose radiuses (0.4 mm 0.8 mm, and 1.2mm), three different cutting speeds (100, 130, 170 m/min) and feed rates (0.1, 0.125, 0.16 mm/rev) while depth of cut keep constant at (0.4 mm). It is seen that the insert nose radius, feed rates, and cutting speed have different effect on the surface roughness. The minimum average surface roughness (0.225µm) has been measured using the nose radius insert (1.2 mm) at lowest feed rate (0.1 mm/rev). The highest surface roughness (1.838µm) has been measured with nose radius insert (0.4 mm) at highest feed rate (0.16 mm/rev). The analysis of ANOVA showed the cutting speed is not dominant in processing for the fine surface finish compared with feed rate and nose radius. Conclusion, surface roughness is decreasing with decreasing of the feed rate. High nose radius produce better surface finish than small nose radius because of the maximum uncut chip thickness decreases with increase of nose radius.


Sign in / Sign up

Export Citation Format

Share Document