Dynamic Interactions Between Sliding Friction and Tip Relief in Spur Gears

Author(s):  
Song He ◽  
Rajendra Singh

The chief objective of this article is to examine dynamic interactions between sliding friction and profile modifications in a spur gear pair. First, a new computational method is proposed that incorporates the sliding friction and realistic time-varying stiffness into a multi-degree-of-freedom system model. Second, competing friction formulations, such as the Coulomb dry friction model and empirical expressions based on elasto-hydrodynamic and/or boundary lubrication regime principles, are briefly evaluated and validated by comparing friction force predictions with measurements. Third, effect of the profile modification on the dynamic transmission error is analytically examined under the influence of sliding friction. An out-of-phase relationship between the normal load and friction force is found to be critical as it could amplify motions or forces in the off-line-of-action direction. Typical tip relief schemes are examined including the perfect involute profile (baseline), short tip relief (at light load), intermediate tip relief (at medium load) and long tip relief (at peak load). Case studies are evaluated over a range of operating loads; interactions between sliding friction and profile modifications are observed. Finally, principles that could minimize dynamic transmission errors in the presence of sliding friction are introduced.

2006 ◽  
Vol 113 ◽  
pp. 334-338
Author(s):  
Z. Dreija ◽  
O. Liniņš ◽  
Fr. Sudnieks ◽  
N. Mozga

The present work deals with the computation of surface stresses and deformation in the presence of friction. The evaluation of the elastic-plastic contact is analyzed revealing three distinct stages that range from fully elastic through elastic-plastic to fully plastic contact interface. Several factors of sliding friction model are discussed: surface roughness, mechanical properties and contact load and areas that have strong effect on the friction force. The critical interference that marks the transition from elastic to elastic- plastic and plastic deformation is found out and its connection with plasticity index. A finite element program for determination contact analysis of the assembled details and due to details of deformation that arose a normal and tangencial stress is used.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1428
Author(s):  
Shengguang Zhu ◽  
Liyong Ni

Previous research on friction calculation models has mainly focused on static friction, whereas sliding friction calculation models are rarely reported. In this paper, a novel sliding friction model for realizing a dry spherical flat contact with a roughness effect at the micro/nano scale is proposed. This model yields the sliding friction by the change in the periodic substrate potential, adopts the basic assumptions of the Greenwood–Williamson random contact model about asperities, and assumes that the contact area between a rigid sphere and a nominal rough flat satisfies the condition of interfacial friction. It subsequently employs a statistical method to determine the total sliding friction force, and finally, the feasibility of this model presented is verified by atomic force microscopy friction experiments. The comparison results show that the deviations of the sliding friction force and coefficient between the theoretical calculated values and the experimental values are in a relatively acceptable range for the samples with a small plasticity index (Ψ ≤ 1).


Nanoscale ◽  
2018 ◽  
Vol 10 (14) ◽  
pp. 6375-6381 ◽  
Author(s):  
Wengen Ouyang ◽  
Astrid S. de Wijn ◽  
Michael Urbakh

The interplay between different channels of energy dissipation may lead to non-monotonic dependence of the friction force on the adsorbate surface coverage and to strongly nonlinear variation of friction with normal load.


Author(s):  
Andrey Ovcharenko ◽  
Gregory Halperin ◽  
Izhak Etsion

The elastic-plastic contact between a deformable sphere and a rigid flat during pre-sliding is studied experimentally. Measurements of friction force and contact area are done in real time along with an accurate identification of the instant of sliding inception. The static friction force and relative tangential displacement are investigated over a wide range of normal preloads for several sphere materials and diameters. It is found that at low normal loads the static friction coefficient depends on the normal load in breach of the classical laws of friction. The pre-sliding displacement is found to be less than 5 percent of the contact diameter, and the interface mean shear stress at sliding inception is found to be slightly below the shear strength of the sphere material. Good correlation is found between the present experimental results and a recent theoretical model in the elastic-plastic regime of deformation.


2021 ◽  
Vol 70 ◽  
pp. 578-592
Author(s):  
Shiquan Liu ◽  
Haijun Zhang ◽  
Liang Zhao ◽  
Guo Li ◽  
Chunyu Zhang ◽  
...  

Author(s):  
SHOAIB IQBAL ◽  
THIERRY JANSSENS ◽  
WIM DESMET ◽  
FARID AL- BENDER

Experiments and simulations performed in the framework of accelerated-life tests of wet friction clutches reveal that with the progression of degradation of clutches, the transmitted power decreases together with a change in the energy flow behavior, mainly in the pre-lockup phase. In addition, the engagement duration increases and the relative velocity fluctuation in post-lockup phase changes. These degradation effects are due to the reduction in friction torque and the change in the relative velocity profile caused by the changing friction characteristics of the clutch friction material with degradation. Simulations are performed in a bond graph methodology incorporating an adapted form of the Generalized Maxwell Slip (GMS) friction model, which calculates the friction torque taking into account the dynamic variation in relative velocity and the normal load.


1987 ◽  
Vol 109 (3) ◽  
pp. 537-543 ◽  
Author(s):  
Peter J. Blau

The mathematical framework for a sliding friction model for run-in and other tribological transitions is presented. The semiempirical model was developed to portray the commonly observed shapes, durations, and variations in kinetic friction coefficient versus sliding time curves. Terms in the model involve material properties and physical interface conditions such as transfer, debris accumulation, and surface roughness. The forms of individual terms are adjustable through the use of systemspecific scaling parameters in order to provide enough modeling flexibility to treat a variety of possible tribological conditions. Effects of such conditions as lubrication efficiency loss over time, and temperature build-up can be incorporated by modification of appropriate terms. Illustrative plots using the framework with several combined contributions are compared with experimental data from previous work. The basic framework of the model can be further developed to incorporate sub-models for specific sliding friction contributions and, in so doing, reduce the number of empirical system parameters required to model actual tribosystem behavior.


Author(s):  
Rajendra Gunda ◽  
Rajendra Singh

Chief objective of this article is to evaluate the role of sliding friction in gear dynamics, and more specifically the effect of the periodic variations in mesh stiffness, load distribution and friction torque during a mesh cycle. A non-unity speed ratio spur gear is considered. Only the torsional degree of freedom of the gear pair, with ideal Coulomb friction law, is analyzed. Previous studies by Vaishya and Singh [1–3] make idealized assumptions about temporal (or spatial) variation of mesh stiffness and load sharing in order to obtain more tractable analytical solutions. In our formulation, an accurate Finite Element/Contact Mechanics analysis code [4] is run in the static mode to compute the mesh stiffness and load distribution at every time instant of the mesh. The computed parametric variation of stiffness is then incorporated into our dynamic formulation that includes frictional torques. Next, we use appropriate numerical techniques to solve for the dynamic response in time domain. This study, though preliminary in nature, examines the effects of pinion speed, coefficient of friction and mean input torque. This, along with work in progress, should yield further insights into the role of friction sources in gear vibro-acoustics.


Sign in / Sign up

Export Citation Format

Share Document