Conceptual Stress and Conceptual Strength for Functional Design-for-Reliability

Author(s):  
Zhaofeng Huang ◽  
Yan Jin

Stress and Strength Interference Theory (SSIT) is a fundamental theory for reliability assessment. It has been widely used as a foundation for design-for-reliability (DFR). However, SSIT and associated methodology and tools, that require detailed definitions of constructional and form structure, are only applicable to an embodiment design. As many researchers have attempted to push DFR upfront to a conceptual and functional design stage, SSIT loses its usefulness, while other equivalent theory and tools for conceptual and functional design-for-reliability do not exist. Therefore, DFR for conceptual and function design becomes ad-hoc that lacks a systematic approach and parametric reliability quantification. In this paper, we first review the literature on stress and strength interference, and then extend the concepts of stress and strength to conceptual stress and conceptual strength that are relevant to conceptual and functional designs. Based on the conceptual stress and conceptual strength, we introduce a Conceptual Stress and Conceptual Strength Interference Theory (CSCSIT) and discuss how it can be applied to support conceptual and function design-for-reliability. We illustrate our theoretical work with a conceptual and function design example. We conclude the paper with a discussion of the future research to further define and substantiate the CSCSIT work.

2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Zhaofeng Huang ◽  
Yan Jin

It has been recognized that design-for-reliability (DFR) during the conceptual design stage is very challenging. There are several gaps and deficiencies hindering the DFR implementation. The first gap is due to the disconnection between the output of the conceptual design and reliability parameters needed for the reliability modeling. The second gap is between the knowledge available during the conceptual design and the information needed for reliability analysis. The state of the art design-for-reliability research and implementation are primarily based on the traditional reliability stress and strength interference theory. The research to date has mainly focused on the embodiment design-for-reliability, since they take embodiment design data as inputs and derive reliability measures of the product as results. On the other hand, the conceptual design, in general, and functional design in specific are usually nonanalytical and nonquantitative and result in little information immediately useful for a detailed reliability analysis. Our research aims to address these gaps and deficiencies and to build a bridge between the reliability research and the conceptual design research in order to realize conceptual design-for-reliability. In this paper, we first review the state of research and practice in the fields of reliability and conceptual design. Building on the previous research, we extend the traditional reliability stress and strength interference theory and develop a conceptual stress and conceptual strength interference theory (CSCSIT) that parametrizes the conceptual design space by introducing reliability related parameters into functional design. Based on CSCSIT, a practical analysis framework is proposed to support functional design-for-reliability. A functional design example is presented to demonstrate the effectiveness of CSCSIT and the proposed framework.


Author(s):  
Kai-Lu Wang ◽  
Yan Jin

Functional design is a process in engineering design that dominates the key features of the result to be developed. Designing good functions that both satisfies the requirements and leads to better results is a challenge due to uncertainties on the consequences of the selected functions, and the lack of analysis methods for identifying the properties of function structures. Therefore, extensive experiences are usually required for functional design. This research argues that the physical relationships among the resulting components of a design are the consequences of functional dependencies developed during the functional design process. Therefore based on the understanding of functions and functional dependencies, a reasoning procedure can be developed to predict the performance properties of the design so that the effectiveness of the functional design can be evaluated at an early design stage. This paper proposes a dependency-based function modeling and analysis method that can be applied to represent and assess functions and function structures at the functional design stage. Designers can predict the properties of the functions they designed without having to have similar design experiences. An application software is also developed to implement the method and demonstrate its effectiveness.


2019 ◽  
Vol 4 (1) ◽  
pp. 59-76 ◽  
Author(s):  
Alison E. Fowler ◽  
Rebecca E. Irwin ◽  
Lynn S. Adler

Parasites are linked to the decline of some bee populations; thus, understanding defense mechanisms has important implications for bee health. Recent advances have improved our understanding of factors mediating bee health ranging from molecular to landscape scales, but often as disparate literatures. Here, we bring together these fields and summarize our current understanding of bee defense mechanisms including immunity, immunization, and transgenerational immune priming in social and solitary species. Additionally, the characterization of microbial diversity and function in some bee taxa has shed light on the importance of microbes for bee health, but we lack information that links microbial communities to parasite infection in most bee species. Studies are beginning to identify how bee defense mechanisms are affected by stressors such as poor-quality diets and pesticides, but further research on this topic is needed. We discuss how integrating research on host traits, microbial partners, and nutrition, as well as improving our knowledge base on wild and semi-social bees, will help inform future research, conservation efforts, and management.


1992 ◽  
Vol 128 ◽  
pp. 56-77 ◽  
Author(s):  
Jonathan Arons

AbstractI survey recent theoretical work on the structure of the magnetospheres of rotation-powered pulsars, within the observational constraints set by their observed spindown, their ability to power synchrotron nebulae and their ability to produce beamed collective radio emission, while putting only a small fraction of their energy into incoherent X- and gamma radiation. I find no single theory has yet given a consistent description of the magnetosphere, but I conclude that models based on a dense outflow of pairs from the polar caps, permeated by a lower density flow of heavy ions, are the most promising avenue for future research.


Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 10
Author(s):  
Luca Bruzzone ◽  
Mario Baggetta ◽  
Shahab E. Nodehi ◽  
Pietro Bilancia ◽  
Pietro Fanghella

This paper presents the conceptual and functional design of a novel hybrid leg-wheel-track ground mobile robot for surveillance and inspection, named WheTLHLoc (Wheel-Track-Leg Hybrid Locomotion). The aim of the work is the development of a general-purpose platform capable of combining tracked locomotion on irregular and yielding terrains, wheeled locomotion with high energy efficiency on flat and compact grounds, and stair climbing/descent ability. The architecture of the hybrid locomotion system is firstly outlined, then the validation of its stair climbing maneuver capabilities by means of multibody simulation is presented. The embodiment design and the internal mechanical layout are then discussed.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 465
Author(s):  
Colleen A. Mangold ◽  
David P. Hughes

Many organisms are able to elicit behavioral change in other organisms. Examples include different microbes (e.g., viruses and fungi), parasites (e.g., hairworms and trematodes), and parasitoid wasps. In most cases, the mechanisms underlying host behavioral change remain relatively unclear. There is a growing body of literature linking alterations in immune signaling with neuron health, communication, and function; however, there is a paucity of data detailing the effects of altered neuroimmune signaling on insect neuron function and how glial cells may contribute toward neuron dysregulation. It is important to consider the potential impacts of altered neuroimmune communication on host behavior and reflect on its potential role as an important tool in the “neuro-engineer” toolkit. In this review, we examine what is known about the relationships between the insect immune and nervous systems. We highlight organisms that are able to influence insect behavior and discuss possible mechanisms of behavioral manipulation, including potentially dysregulated neuroimmune communication. We close by identifying opportunities for integrating research in insect innate immunity, glial cell physiology, and neurobiology in the investigation of behavioral manipulation.


Author(s):  
Makoto Ogata

Abstract Carbohydrates play important and diverse roles in the fundamental processes of life. We have established a method for accurately and a large scale synthesis of functional carbohydrates with diverse properties using a unique enzymatic method. Furthermore, various artificial glycan-conjugated molecules have been developed by adding these synthetic carbohydrates to macromolecules and to middle and low molecular weight molecules with different properties. These glycan-conjugated molecules have biological activities comparable to or higher than those of natural compounds, and present unique functions. In this review, several synthetic glycan-conjugated molecules are taken as examples to show design, synthesis and function.


2021 ◽  
Author(s):  
Emelia Delaney ◽  
Wei Liu

Abstract The aim of sustainability is to fulfil the needs of current generations without compromising the needs of future generations. It is also a rising area of concern within industry, it is therefore important that graduate designers are equipped with the skills to accommodate sustainability issues as well as demands from industry. Additionally, the product design stage during New Product Development has been identified to have the greatest impact on the sustainability of the entire product, however how educated designers are on the topic of sustainability is unclear. An initial literature review has been conducted to investigate design education on sustainability as well as teaching styles. Following this the study identifies and reviews UK Product Design courses to establish the current status of sustainability integration in higher education. The exploration into university prospectuses has found that around half of UK universities implement sustainability in some way, however there are limited courses which dedicate specific modules to sustainability. Additionally, links with industry and accreditation organizations between UK product design courses have been confirmed, but there is no definite information to suggest that the universities use this to aid in the implementation sustainability education. From this review future research directions have been outlined.


2019 ◽  
Author(s):  
Madeline Farber ◽  
Dylan Gee ◽  
Ahmad R. Hariri

Studies of early adversity such as trauma, abuse, and neglect highlight the critical importance of quality caregiving in brain development and mental health. However, the impact of normative range variability in caregiving on such biobehavioral processes remains poorly understood. Thus, we lack an essential foundation for understanding broader, population-representative developmental mechanisms of risk and resilience. Here, we conduct a scoping review of the extant literature centered on the question, “Is variability in normative range parenting associated with variability in brain structure and function?” After removing duplicates and screening by title, abstract, and full-text, 23 records were included in a qualitative review. The most striking outcome of this review was not only how few studies have explored associations between brain development and normative range parenting, but also how little methodological consistency exists across published studies. In light of these limitations, we propose recommendations for future research on normative range parenting and brain development. In doing so, we hope to facilitate evidence-based research that will help inform policies and practices that yield optimal developmental trajectories and mental health.


2021 ◽  
pp. 1-18
Author(s):  
Jacob A. Miller ◽  
Mark D'Esposito ◽  
Kevin S. Weiner

Stuss considered the human prefrontal cortex (pFC) as a “cognitive globe” [Stuss, D. T., & Benson, D. F. Neuropsychological studies of the frontal lobes. Psychological Bulletin, 95, 3–28, 1984] on which functions of the frontal lobe could be mapped. Here, we discuss classic and recent findings regarding the evolution, development, function, and cognitive role of shallow indentations or tertiary sulci in pFC, with the goal of using tertiary sulci to map the “cognitive globe” of pFC. First, we discuss lateral pFC (LPFC) tertiary sulci in classical anatomy and modern neuroimaging, as well as their development, with a focus on those within the middle frontal gyrus. Second, we discuss tertiary sulci in comparative neuroanatomy, focusing on primates. Third, we summarize recent findings showing the utility of tertiary sulci for understanding structural–functional relationships with functional network insights in ventromedial pFC and LPFC. Fourth, we revisit and update unresolved theoretical perspectives considered by C. Vogt and O. Vogt (Allgemeinere ergebnisse unserer hirnforschung. Journal für Psychologie und Neurologie, 25, 279–462, 1919) and F. Sanides (Structure and function of the human frontal lobe. Neuropsychologia, 2, 209–219, 1964) that tertiary sulci serve as landmarks for cortical gradients. Together, the consideration of these classic and recent findings indicate that tertiary sulci are situated in a unique position within the complexity of the “cognitive globe” of pFC: They are the smallest and shallowest of sulci in pFC, yet can offer insights that bridge spatial scales (microns to networks), modalities (functional connectivity to behavior), and species. As such, the map of tertiary sulci within each individual participant serves as a coordinate system specific to that individual on which functions may be further mapped. We conclude with new theoretical and methodological questions that, if answered in future research, will likely lead to mechanistic insight regarding the structure and function of human LPFC.


Sign in / Sign up

Export Citation Format

Share Document